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1. INTRODUCTION

This final report covers research done on " A Sensor with Biological Preprocessing
Features" under the sponsorship of the Air Force Office of Scientific Research, covering
the period February 1, 1986 to September 30, 1987.

As a result of the effort, four students have obtained the Master of Science degree in
Electrical Engineering and one student the Doctor of Philosophy degree in Electrical
Engineering [1,2,3,4,5]. Eleven papers have been written, five of which have been pub-
lished [6,7,8,9,10], one is an invited paper to be published shortly [11], one will be pub-
lished shortly [12], and the rest are under the process of review [13,14,15,16].

Research results obtained through January 1986 were reported in the Final Report
on Grant No. AFOSR-84-0349, "Biological Visual Systems Structures for Machine
Vision Applied to Robotics", Report No. UVA/525647/EE86/101, February 1986 [41].
A brief summary complemented with results not reported in that report follows in Sec-
tion 2. The main body of this final report contains more recent results. The report is
organized in the order listed below. For clarity and convenience, references have been
listed at the end of each section.

1.  Introduction

2. Review of Previous Work

3. Long Range Qualitative Motion Detection Algorithm
4. A Fast Algorithm for Motion Prediction
5

Pattern Recognition Using the BVS, the C-transform and a Neural Network
Classifier

Dual Sensor Implementation and Analysis
Depth Computation from Optical Flow
8.  Vestibular-ocular Motion for Target Tracking

REFERENCES

A. Dissertations and Thesis
1. C. Narathong, "An Algorithm for Motion Prediction Using a Biological Visual Sen-

"
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2. C. Hsin, "Edge and Motion Detection Using Peripheral Human Visual Properties."
Master of Science Thesis, University of Virginia, May 1986.

3. J.I. Minnix, "Structural Analysis and Design of a Biological Based Vision Sensor,”
M.S. Thesis, University of Virginia, August 1986.

4. Z. Rahman, "Motion Detection Using a Biological Type Vision Sensor,” M.S.
Thesis, University of Virginia, August 1986.

5. V. L. Davis, "Misrosaccadic Eye Movement and its Applications to Sensor Resolu-
tion Enhancement,” M.S. Thesis, University of Virginia, May 1987.
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. Y. REVIEW OF PREVIOUS WORK

2.1. Biological Visual Sensor Configuration

T'hree hasic connigurauons for the image plane were considered: arcs of ring (cailed
rectangular elements ™, circular elements and hexagonal elements, see Fig. 2.1. Design
r..es reiating the number of concenmece nings to the number of elements per ring for the
nree connguranons were developed. In addition, a program to simulate images that
AoL.d be obtained with these structures, using real images obtained with a conventional
12k 312 CCD camera, was written and used for all subsequent work. Based on the
“e.d ot view covered by the sensor for a specific optic configuration, the number of pix-
¢.~ ot the wog-spiral sensor 1s orders of magnitude smaller than that of a conventional rec-
lanco.dr sensor. for equivalent pixel size in the fovea region. The basic properties of the
B\'N ~ensor contiguration, such as invanance to scaling and rotation about the optical
axos were ventied using real images.

Additi nal work not included 1n the report has been done on the use of chain coding
tor the ~six neighborhood computation plane grid. Several binary images were chain-
«oded tor companson with eight neighborhood coding of conventonal images. Due to
the tact that the six neighborhood coding was applied in the computation plane, where
.muages have a completely different shape than in the image plane, the chain-length was
1ot as short as the reduction in number of pixel would seem to indicate, but it was
signiticantly shorter than that of the conventional sensor images, nevertheless. In addi-
r1on. the process Is faster because only six directions are used. Once the images were
chain coded, pattern recognition was performed on them using chain-coded template
matching which 1s more convenient than other methods in this case. For example, a cir-
¢.¢ has only one chain direction and chain length, irrespective of size, when it is centered
on the optical axis and the code does not change for other centered objects either,
irrespective ot size and rotation.

2.2. Edge and Motion Detection with the New Sensor

This part of the research dealt modelling properties of the human peripheral visual
svstem (HPVS) for edge and motion detection and its application to the new sensor. A
good summary of outstanding research results by other investigators in the area of model-
ling 1s given in the February 1986 report and in [1].

Edge detection for the arcs-of-ring sensor can be implemented in the computation-
plane’s rectangular grid using any of the standard methods such as local neighborhood
operator, Laplacian-Gaussian or global methods related to signal analysis [2,3]. For the
circular and hexagonal sensors, the computation-plane array is staggered, forming a hex-
agonai array and the following two neighborhood operators can be used:

- , B _ 5
¢, =la.~a,l +la,~a,l +la,—a,) +1a,~a;l +la,~a,l + la,~a,l (2.1)

and

("\ ‘\)

g =1a1—a:)+(a1~a})+(al—a.,)v(al—as)+(a1—as)+(a]—a7)

These are. respectively, the absolute value and the Laplacian methods. The abso-
lute value method does not produce zero-crossings and is, consequently, less similar to
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HPVS models than methods such as the Laplacian-of-the-Gaussian. In the Laplacian
method positive and negative gray level values around the regions of abrupt intensity
change are obtained, and the zero-crossing points between these are chosen as the edges.
In order to eliminate spurious edges in noisy images, an optional thresholding operator
can be applied. The general method is shown in block diagram in Fig. 2.2. Simulations
with synthetic and real images obtained with a 512 by 512 CCD camera and transformed
to the new sensor equivalent image by the technique described in the report. These were
performed using the Laplacian-Gaussian method and the two operators of formulas (2.1)
and (2.2). For synthetic images, the results using (2.1) were practically identical to those
of the Laplacian-Gaussian. For a real image, a noise photograph of a girl's face, Fig.
2.3(a), the results for (2.1) and the L-G are given in Figs. 2.3(b) and (c), respectively.
Notice that the edges are very similar in both cases. These results correspond to a low
resolution circular sensor of 36 rings, 75 elements per ring. More detailed edges are
obtained with a higher resolution simulated sensor of 51 rings, 120 elements per ring.

For motion detection, the same approach was used as for edge detection. Biological
motion detection was first reviewed [1] using the two process theory of HVS and then
simulations were performed using the T and U channels (4] for short-range mode. The
procedure for simulation was:

a) Perform spatial convolution S(x .y 1) = v fx.yt)
b)  Establish the orientation of zero-crossing contours
¢) Apply temporal derivation to S(x,y£): T(x.y.t) =3S (x.y £ )iot

d) To detect motion at each zero-crossing, a positive value of T indicates motion
towards the negative side of the crossing; a negative value of T indicates the oppo-
site. The direction of motion is perpendicular to the edge.

e) All the unit directional vectors in an edge region with a given orientation are com-
bined into a single unit vector pointing in that direction. After this operation is per-
formed, unit directional vectors in adjacent regions with different orientation are
combined in the same way, proceeding along the edge, until the complete closed
edge has been processed. This will give the direction of motion. The resolution is
limited to 45° increment. In Fig. 2.4, a square is translated at an angle of 45°, as
indicated by the arrow at the center of the square.

The simulation in short-range mode for the new detector is related to intensity based
schemes in computer vision. The simulation procedure was as follows:

a)  Apply the six-neighborhood Laplacian operation to the input images.

b) Establish the orientation of zero-crossings for the first frame and apply 7-element
chain coding to the zero-crossing contour to segment the objects.

¢) Perform temporal derivation by subtraction, T(x,y £)=S(x.v.1 +A)~S(x.y.t).

d) With reference to Fig. 2.5, in which positively marked pixels correspond to high
intensity at edge boundary and negatively marked ones to low intensity, when the
edge is moving towards the negative side as shown in Figs. 2.5(a) and (d), all seven
elements will become positive at the second frame. When the edge is moving
towards the positive side, some elements may remain positive. The direction of
local motion is perpendicular to edge orientation at zero-crossing and the displace-
ment is limited to two pixels.
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Fig, 2.2 Edge Detection Using BVS,

{(b)

() (d)

(a) Original image: a noisy image of a lady's face.

(b) Simulated circular-element sensor image, image plane.

(c) Edge detection by Laplacf!an-Gaussian method, with thresholding, comp. plane.
(d) Edge detection by Laplacian method, with thresholding, comp. plane.
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Fig. 2.6. Motion Detection by the New Sensor.
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e) Combining the directions of local motion along the connected zero-Crossings by
vector analysis, the complete motion is derived. The results were all satisfactory.
An example is given in Fig. 2.6. Note that the examples are presented in the image
plane for easy visualization.
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3. LONG RANGE QUALITATIVE MOTION DETECTION ALGORITHM

A qualitative algorithm for long-range motion detection has been developed based
upon heuristic rules. It has been tested with both synthetic and real images and it has
produced correct results in all instances. The assumptions necessary for application of

the algorithm are that the image has been segmented and binarized and that a binary edge
is available in the computation plane.

Four cases were considered which can be combined to produce more complex
scenes:

a) Objects enclosing the optical axis.

b) Objects "enclosing the optical axis slightly.” It is necessary to make this distinc-
tion between cases (a) and (c) due to the discrete nature of the process. For a con-
tinuous edge, only (a) and (c) are necessary.

c) Objects not enclosing the optical axis.

d) More than one object, of any type, in the field of view.

For objects enclosing the optical axis, the qualitative algorithm is based on having
the difference image between the perturbed and the original images in the computation
plane; these are called "current image (CI)" and "previous image (PI)," respectively.

The qualitative algorithm is as follows:

Eight (8) positon counters are required to keep track of relative positions of points in the
CI and the PI. These counters are called cnrcl, cnic2, cnec3, cnec4, and cntpl, cnip2,
cntp3, cntp4 and they determine which points in each of the frames are in which of the
four quadrants. Since the polar angle is mapped to the v-axis in the complex plane, the
four quadrants represent four distinct regions along it. The four regions over the v-
domain are shown below. They are

-m2< v S®2 (i)
n2< v <32 (i)
0< v <1 (iii )
T< v <2 (iv)

The first two regions are used to detect horizontal motion, or motion along the x-axis,
and the other two to detect vertical motion, or motion along the y-axis.

Once the number of points in each region has been obtained, the following set of
rules decides the direction of motion.

If there are more CI points in Region-(i) than there are PI points in Region-(ii) and.
at the same time, more PI points in Region-(i) than there are CI points in Region-
(ii), then the motion is in the +x direction. In other words, if the above critena 1s
true, the object has moved to the right of its original position.

In a similar manner, if the number of CI points in Region-(ii) is greater than the
number of points in Region-(i), and, at the same time, the number of PI points in
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Region-(ii) is greater than the number of CI points in Region-(i), the motion is in
the -x direction. In other words, the object has shifted to the left of its original posi-
tion.

An object is selected to be moving up from its original position if there are more Cl

points in Region-(iii) than there are PI points in Region-(iv) and. at the same time,

more PI points in Region-(iii) than there are CI points in Region-(iv).

For downward motion, the number of CI points in Region-(iv) has to be greater than

the number of PI points in Region-(iii) and, simultaneously, the number of PI points

in Region-(iv) has to be greaier than the number of CI points which fall in Region-

(iii).

The verbal description of the detection of horizontal and vertical motion can be
confusing. A mathematical formulation describes the situation more succinctly. Let Np

be the number of PI points in Region-(i). By the same token, Np . Nq . N. represent the

number of PI points in Region-(ii), and the number of CI pomts in Reglon (i) and
Region-(ii) respectively. Then, if

NCX > NP: and NPl > NC

2

motion is in the +x direction. Using the same convention, if

NC2>NP and NP >NC

1 2 i

motion is in the -x direction.
Defining N, . N, , N, N, to represent the number of Pl and CI points in Region-
3 3 4

4

(iii) and Region-(iv) respectively, if
Nc, > NP‘ and NP) >N

4

motion is in the +y or upward direction. Similarly, if
NC‘ > NP’ and NP‘ > NC]

motion is in the -y or downward direction.
3.1. Algorithm Testing

The Qualitative Algorithm was tested to have performed satisfactorily with both line
images, and synthetically generated two dimensional images. One of the major assump-
tions made was that an edge image was available to the algorithm. In both cases certain
aspects of the images were ideal. The chief of these idealizations was that the edges
were well defined and. in most case, one pixel width thick. Noise was introduced in the
images to check the robustness of the algorithms, but the edges of the objects were still
well defined because of the low content of the noise. In other words, in all of the test
cases, the signal-to-noise ratio of the information content of the image was extremely
high.

.........
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The algonthm was then tested with real images, and it was noted that the edges
were not so well defined. In order to remedy this situation, a very high contrast back-
ground was used. This provided much better edge informadon. Once the edges were
obtained, the motion of the object was computer simulated. Tests with actual physical
motion of the objects were not run.

3.2. Problems With Real Images

Real images do not display the ideal properties of either line or synthetically gen-
s erated images. The actual informadon in the images is quite heavily overlaid by noise
AN and any attempt made to filter out the noise resulted also in loss of information and hence

.'\‘f-;: distortion of the image. Another problem encountered was that of the background. In
A the images used earlier, the background was of a uniform intensity distribution. This,
then, made 1t a completely negligible entity since it had no features which would either
'j:\_' add to or reduce the complexity of the preprocessing algorithm. The background plays
\;;';} an important part in finding the difference images which are needed to find the direction
R of motion with the qualitatve algorithm. v
NN The Gradient operator originally used to detect edges was highly susceptible to
® noise. Hence, a new operator, viz. the Sobel Operator, was uilized to perform edge
;::j: detection. T' ugh much better than the Gradient Operator as far as noise sensitvity is
I concemed, the Sobel Operator produces edges which are on average three pixels wide.
e Since one of the ideal conditions assumed was that the width of the edges was only one
-3 pixel, this caused a serious problem in the application of the algorithms. The images thus
( - have to be heavily preprocessed in order for them to be usable with the qualitative algo-
s rithm.
o 3.3. Schemes for Preprocessing Images
;Z : A number of schemes were attempted to solve the above mentioned problems. The
G schemes were all extremely time consuming. A discussion of such problems and the
" schemes used to counter follows.
' The first scheme was used to eliminate the background from the images. A rem-
o inder here that the qualitative algorithm uses two images, the second taken a time T after
::--f'_' the first, and based on the positional information derived from such an operation, predicts
S the directon of travel. Since the background was common to the two images, it may be
:. . wondered why it has to be eliminated separately. The reason is that a difference image
- of the two frames needs to be formed. If the background is not eliminated, it is difficult
-, to segment the object from the background after the difference has been found. It was
k.- thus easier to eliminate the background from the images before computing the difference.
The following sequence was followed. The first step, or filter, enhanced the edges
_?;; in the images. This was done by convolving the image with a Sobel Operator. The
- - second step was to binarize the image. It is easiest to deal with binary images because
. segmentation is an important aspect of the sequence. The images thus obtained were
SOy then stored for use by another filter which subtracted first the background information
i from both frames and then the two frames from each other.
0.,

Though the above successfully eliminated the problem of interference of the back-
ground, one problem remained: the thickness of the edges. This becomes a problem in
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terms of speed of computation because for an n point representation of the edge, the total 1
number of operations performed by the algorithm is of the order of n”.

Instead of using edge thinring to solve this problem, another less time consuming
scheme was attempted and has provided quite good results. This scheme introduces two
exmra steps in additon to the sequence mentioned above. After binarizing the image, a -
second edge enhancement operation is performed on the image, this ime using a gra-
dient operator. The gradient operator produces edges which are two pixel wide, thus
reducing the total number of pixels representing the edge.

After the image has been preprocessed, the two images are subtracted from each
other. An average position of difference is calculated and the edges are then recorded
with respect to it The average position of difference is nothing more than a point
represented by the average x-coordinare and the average y-coordinate over the total
number of points of same intensity on the two frames. This allows the qualitative algo-
rithm for centred figures to be used exclusively with all images.

It should be mentioned here that the qualitative algorithm being used differs shghtly
from the scheme utlized with synthetic images. In the earlier case, an edge representa-
tion was required, and the number of current image and previous image points in the
difference image were used exclusively to calculate the direction of moton. In the 3
scheme used here, due to the extremely noisy image, it is not feasible to trace a contour.
Even though the algorithm used earlier did not require continuous edges--a gap of up to 5

E R N RS

pixels width could be tolerated--it was discovered that it failed to perform well with

images obtained from the camera. Further testing is being carried out on this aspect of

the algorithm. f ¥
One major difference between the present use of the qualitative algorithm and the [z

previous use is the following: When using synthetic or line images, since the images v
underwent a transformation with a computer program, the number of points which consti- 1 £
tuted the edges remained constant. Hence the probability of incorrecty selecting a direc- E;
tion of motion was not very high since the number of points in any region depended -
strictly omr the mapping. In other words, since the qualitative algorithm uses the number R
of points in the four quadrants as its basis for determination, the inequalities in the i
number of points in the various regions were due to the placement of the same number of b
points in each frame. Preprocessing affects different frames differently in the case of real
images. Thus, the number of physical pixels which constitute the current image may be
greater or smaller than the number of pixels which constitute the previous edge image.
Fortunately, The difference is negligible. Since the typical number of points is of the
order of 10,000, a difference of a 100 pixels or so does not constitute a serious error.

3.4. Examples and Further Discussion &

In the research conducted on real images it was found that the above aspect of the
qualitative algorithm was unimportant. The new algorithms were tested with 3 real
images. The test objects used were model automobiles.

The results were very encouraging. It was found that even though the pre-processed

images contained all the problems mentioned above, the qualitative algorithm correctly
predicted the direction of motion in each case. The test results are shown below.
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In Fig. 3.1, a car is shown in its inittal and moved positions. The movement is to
the left and. since the car rests on a slight incline, down. The images are then prepro-
cessed in the sequence described earler. A second filter is then used to subtract the back-
ground from the images and then the images from each other. The first step is shown in
Fig. 3.2, and the difference image shown in Fig. 3.3. Note the straight line in Fig. 3.3
dividing the image into two halves. It is in reference to this line that the position of the
objects is calculated. The equation of this line is given by:

x = average —x —coordinate

As noted earlier, both the x-coordinate and the y-coordinate of the average position are
needed. Only one has been shown here for sake of simplicity. The position information
of the points which constitute the current (CI) and the previous (PI) frames was previ-
ously stored so the new set with respect to the average position of difference is easily
obtained. This data is then presented to the direction determining program which first
performs the complex logarithmic conformal mapping on the set of data points and then
decides upon a direction of motion based on where the points fall in the complex plane.
Referring back to the qualitative algorithm, and comparing it against Table 3.1, we note
that the conditions for motion to the left and down are met. Hence the algorithm decides
down and left as the directions of motion. A second example is shown in Figures 3.4, 3.5
and 3.6. The data is once again tabulated and is shown in Table 3.2. As can be seen
from the data and the above relations, the motion of the car is to its right and in a down-
ward direction.

Once again it is emphasized that in the new use of the algorithm the only use we
have of the intersection, or difference, image is to locate a central point. The algorithm
performs its operation on the two preprocessed images.

Multiple Objects In the earlier work with line images, it was shown that the qualitative
algorithm could handle more than one object in the field of view. The objects were not
bound to each other in any sense. In other words, the different objects could undergo dif-
ferent transformations and the qualitative algorithm could detect the objects and then

Number of Points
Region | Previous | Current

Frame Frame
(1) 1425 2173
(i1) 3181 2433

(iii) 1299 3307
(iv) 1526 3080

Table 3.1 Motion to the left and down
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Figure 3.2 Car in initial and moved position after preprocessing.
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=t Figure 3.3 Difference Image.
:j::'." perform the analysis on them. In order to do so, the algorithm depended upon sharply
o defined edges. The way it found the number of objects in the field of view was to find as
o many starting points as it could by using an algorithm and then finding connected areas.
e The limitation of this method was obviously that it could not detect objects whose edges
, crossed each other.
:-_Ij-. With real images and lack of clearly defined edges, this does not work very well. At
o present work is being carried out to make the initial algorithm more robust so that it does
st not require as well defined edges as it did before. Work is also being carried out to use
e the motion of the objects to segment them into various shapes. This, of course, pre-
v supposes rigidity of the objects. Non-rigid motion is a further topic of consideration. In
P a sense, the non-uniform logarithmic mapping is nonrigid motion because since the shape
L;-;.‘; of the objects is not preserved, it does not matter so much what the initial orientation is.
:le At present, work is also being done to develop algorithms to derive depth informa-
N tion from rhe motion of the objects in a plane. For this purpose, a scheme utilizing the
_’:'; ego-motion of the object is being used. It has been used by various researchers as long as
o the line of sight and the direction of motion are parallel, or superimposed on each other,
V- there is quite an easy method to derive such information. It is when the two at an angle
S to each other that problems arise. Itis in this area that we are working.
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| @
Number of Points
o Region | Previous | Current
Frame Frame
(i) 1298 1062
(ii) 965 1175
(ii1) 337 1885
(iv) 1926 352
Table 3.2. Motion to the nght and down
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4. A FAST ALGORITHM FOR MOTION PREDICTION

.; ‘l- .Iv ':. "

N 4.1 Introduction

A sensor for machine vision with biological visual features has been studied by
several researchers [1,2,3,4] based on Schultze's model of the retina [5]. According to
this model, the light sensitive array of elements equivalent to the retina, called the
® ‘“‘image plane’’ has receptive fields, or pixels, of increasing size towards the periphery,

except for a small region at the center, the fovea, at which pixels are of equal size and
~ uniform distribution. The fovea is the region of highest visual acuity. Outside the fovea,
the pixels are distributed in rings whose radius increases in size exponentially. Each ring
" contains the same number of pixels, all of the same size in a given ring. This pixel
T configuration in image plane is mapped to the ‘‘computation plane’’, equivalent to the
» visual cortex by a logarithmic conformal transformation. Figure 4.1 illustrates the sensor
" configuration both in image plane and computation plane. The transformation holds for
0 all points outside the fovea and it is easy to see that objects scaled or rotated about the
. optical axis in image plane remain invariant in shape in computation plane, with shifts
along the « and v axis, respectively, for scaling and rotation. These properties represent
| important advantages for image processing [6,7]. Examples of these properties can be
found in [4].

When objects are translated in the image plane, however, the transformation pro-
duces distorted images in computation plane for which it is extremely difficult to perform
motion prediction because, in effect, a simple translation in image plane corresponds to
nonrigid motion in computation plane.

The receptive fields in a biological visual sensor (BVS) are formed by grouping
large numbers of elementary sensors (cones and rods). There seems to be a one to one
correspondence between receptive fields and elementary sensors in the fovea region
[5,8]. Outside the fovea, translation on the image plane can be analyzed in a simpler way
if elementary sensors are grouped to form essentially a rectangular grid. Depending on
the visual tasks to be performed, different areas in the visual cortex are used. The visual
cortex in primates consists of approximately ten separate areas which are functionally
distinct, but complexly interrelated [8] with functions not yet understood. In a vision sys-
tem emulating some of the features of biological systems, grouping elementary sensors in
a rectangular grid to perform tasks such as tracking, is thus justified. If a single rectangu-
lar sensor is used, the non-uniform exponential configuration (or ‘‘logspiral’’) is obtained
from the sensor by means of a logic circuit [17]. :

. e o
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In this section, an original one dimensional correlation tracker for motion prediction

is developed and used in both configurations. Two-D motion prediction is performed in

- the rectangular tesellation image plane and the rotation and scaling motion is performed
in logspiral’s computation plane.
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4.2. The Tracking Algorithm

. The most relevant characteristic of the algorithm to be described below is that the
) motion prediction problem is solved without using correspondence. The point-to-point
correspondence (defined as : ‘‘what point in the new frame corresponds to a given point
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in the previous frame.’’) problem is considered by many researchers to be very difficult,
or even unsolvable in practical cases [{9.10.11]. Several approaches have been proposed
to solve the motion prediction problem without using correspondence [12,13]. The
approach proposed in this paper is different from those and produces good experimental
results with relatively few computations. Translational moton prediction could be used,
in conjunction with the rotaton and magnificaton properties of the logspiral sensor
configuration, to predict motion in three dimensions.

Consider a dynamic scene. In general, the intensity of the light reflected by the
scene will be a function of location and time, /(x,y.r). We can define its gradient in this

3D space,
T
a A A
Vi = | — — —, (4.1
ox dy dtJ
and its gradient in 2D geometric space,
T
(ar an
Vi=| T T (42)
’  dx ay)

Let 4 be an arbitrary unit vector in (x,y ) space. Then the directional derivative of /(x 1)
in the direction of 4 is

WV

dl
- (4.3)
ds

where

ds = d,u"+dyj‘+d1/c-

For uniform illumination, changes in intensity at a point are due to object motion

(assume that other disturbances are inhibited). If the intensity of a point in the object does

not change with respect to s (in other words, an infinitesimal spatial displacement
dl

corresponds to a change dr in time between consecutive frames). then — =0. Let the unit

ds
vector 4 be given by

o= c(Px.0)0) (4.4

1

2 2 . . . N
where ¢ =(ivi” - 1) ~ and ¥(x.r) is the point velocity. Then, combining (4.3) and (4.4) we
have

(4.5

Eq. (4.5) is known as the constraint equation relating the spatial gradient to the temporal
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:?_n, derivative for a moving object [14]. Let t be the ume between two successive tframes,

- t=¢,-1.. Wethen have
-

Alxa) = W

L B 16

s - (Ax v

ne

bl For

=y ol Ixuy-lixa -0

b - — = 4.7
! ot T

N

k- The approximation of (4.7) is accurate as long as the object motion 1s relatively small.
ol

'{- Using tinite increments in (4.5) and replacing ¥(x.¢) from (4.6 and — from (3.7,

hadei t

i ol ol

e A AVl -lxp -0 =0

1 : ox ay

o or

o ol ol ‘
PY Hxua) = xa)+ —Ax+ Ay (4.8)
” ax dy

In order to deal with large object motion, a recursive process is essential. Thus, to obtain
an iterative algorithm, we proceed as follows:

Let’s consider only one-dimensional motion for the moment. Rewrite (4.8) as

rd

. al(x,lz)'
S Ix ) = Ixugy) N Ax, (4.9
-:" / ()X/ Cx

where
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and x, is an initial pixel position in the first frame. x 1s an arbitrary chosen pixel position
in the second frame. Normally, we will choose x, to be equal to ¢, unless a prnior intor-
mation about x, is provided. Thus, for any pixel and for a discrete case. we have

(4
'
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ax
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Now, define the correlation of (T,} and (R | as

-

C = ZXRT (411

1=

Combine (.10) and (4.11) together and for Ax =Ax, for all ; yield

- L.
R

TR -FRT

7=l 1=1

Simuilarly. for Av, expression, we have

where

-~
£

—~—
1}

Sampled| Iy, .t)]

-

-

J

{T)}

Sampled| I (y £y)

In other words, Ay, is estimated in a column direction. v, and v are as before. To start the
algorithm above, we let

Axy = 0
Ay, =0
’ (314
XA = IA- ‘-Mx—l
vl = V - 4.tﬁyvl_l
and R 1s evaluated for the next iteration as
‘R = Sampled ixv.iy _
' i e (1.15)
- S . s - - . -, L
TR “u ~ e . .
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The iteration process stops when the following conditions occur
-‘:“ Il = xx-:
| (4.16)
- ’V‘ = yx—l
T or
~~\
-‘_" AX‘ =0
o (4.17)
. Ay, =0
\
j::-_ After stopping the iteration process, the final estimated expressions are
o ax = Tas,
. = (4.18)
N2 Ay = Ty,
.:::. =1
S
\'J,'
‘«.-ﬂ~ where n is the number of iterations. Equation (4.18) gives us the estimates within a frac-

]
. n
o

tion of pixel accuracy. The final estimates can also be obtained equivalently from the fol-
lowing equations.

0 L
e ' "‘“
el

Ax

Xi_XO

oo
R
-5
.
P

(4.19)
Ay =y, -y,

These expressions, however, can only give us the estimates within an integer value.

The algorithm developed above is a spatio-temporal type algorithm (gradient algo-
rithm) which is very attractive as far as hardware implementation is concerned [15,16].
The algorithm utilizes only a point-by-point basis (i.e.; a single-degree-of-freedom corre-
lation) as opposed to conventional correlation. Thus, computation time is significantly
reduced. But, perhaps, the most important feature is its ease of implementation in a
parallel fashion. Horizontal and vertical perturbations can be computed independently
even if the object experiences 2-D motion. The reason for this is that (4.12) and (4.13) are
based on the individual row or column. Thus, rows and columns can be processed simul-

A

A
"
‘a
LA

® taneously. Thus, for example, an image of size 64x64 pixels will need 2xtx64 cpu seconds
. to compute the perturbations, whereas for the parallel processors with 128 processors, the
o time required is  seconds, where ¢ is the processing time to compute the estimate in a
Yo single row. In addition, the algorithm requires computation of gradients. This, in general.
- causes a serious problem when the image is severely degraded by noise. In the real image
°. simulation, we will demonstrate empirically that the algorithm above possesses good
- noise immunity and the computation of the gradients does not affect the estimates
- ’-
severely.
v
> .
B
.
T
r.;.‘
-
°
o

Y,

e e
Al T B AL P

Pd



4.2.1. 2D Motion (a general case)

The correlation tracker has been denived considering motion in the x and the .
directions independently, and although it can be applied to motion in the x and y direc-
tions, in general it will not produce good results for motion in both directions simultane-
ously. The problem for general x/y translation is that corresponding rows (and columns)
in frames i and :+/ within the moving area will be shifted with respect to each other. For
example, if Ax = 3 pixels and Ay =5 pixels, the object has moved right by 3 pixels and up
by 5 pixels and rows in frame i+1 will be at location k+5 with respect to corresponding
rows in frame : (where £ is row number). Hence, if a search is performed for each row in
- both the positive and the negative directions to find the best matching row in the second
: frame, this problem can be solved. The question remains: how many rows (and columns)

[ must comprise the search area? This, of course, will depend on how large a motion will
" occur between tframes which, in turn, depends on sampling rate and object speed. A rea-
{ K sonable figure is to allow for displacements of at most ten percent of the maximum object

dimension in pixels, in both the x and the y directions. The number of search rows will
. then be twice the maximum object dimension plus one, in pixels units.

e et}

The row under investigation is correlated with all the rows in the search region and

a pixel by pixel estimate is performed. The row which produces the most consistent esti-
mate is likely to be the matching one. This can be best illustrated by Fig. 4.2, where we
search 3 rows above and 3 rows below the ia row in the first frame. If the object, for
example, moves up 2 pixels, then the (k-2yh row in the second frame is perfectly
. matched to the row kih in the first frame. That is, the estimate obtained from correlating
- these two rows using (4.12) is a consistent estimate. Others will produce inconsistent esti-
v mates. This will become clearer in the simulation on a Gaussian image. It is also possi-
ble that the first iteration, although producing the most consistent result, will not suffice,

so the search region is decreased to a fraction of its previous size and a second iteration 1s

performed. After the first iteration, in order to determine which is the row with the most

N consistent estimation, a histogram of pixel estimates is generated for each row (or
column). The histogram with the smallest variation is chosen as the matching one. After

A

® this first iteration, the average estimate for that row is chosen (nearest integer) as the first

2 displacement estimate and the reference image (first frame) is moved by that number of
. pixels in the estimated direction of rnotion. A new iteration is now performed using
- (4.12) and the process is repeated. As mentioned above, there may be cases in which the

. original best matching row is not the same for the second iteration. When the displace-

P ment estimate is zero or a fraction of a row less than one half, the iteration process is

v stopped. All estimated values are then added to determine the total displacement est-

mate.

‘ 4.2.2. Simulation with a Gaussian Grey Level Image

-, The algorithm was tested with a bi-valued Gaussian function of the form

- px.y)=10[Pp,(x.y)+Pp,(x.y)]
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Figure 4.2 Row search mechanism
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The array size is 64x64, -20 < x < 43, -25 <y < 38. Figure 4.3 shows the grey level
image.

The synthetic image was displaced by Ax=3, Ay=3 and a row by row correlation was
performed using (4.12) with a search area of nine rows. The algorithm is applied only to
the minimum rectangle enclosing the object (tracking window) to be tracked, hence we
are assuming that segmentation has already been performed offline. This needs to be
done only at the start of the operation. In other words, a prior1 information about target
characteristics such as its size and its location with respect to the reference frame need to
be known. The average displacement estimate for rows in the region containing the
image when correlated with rows displaced from k-4 to k+4 is shown in Table 4.1. The
corresponding histograms, i.e., the number of occurrences vs estimated displacement for
rows k and k+i, i=-4 to 4, are shown in Fig. 4.4. Comparing the table with the histogram,
a best match is obtained for a row shift equal to three, with a Ax = 2. In this case, the
matching rows in the second frame produce consistent estimates ~f Ax. Other row shifts
give estimates of Ax which vary widely in both magnitude and direction. The original
image is now shifted by 2 pixels to the right and a new iteration is performed. A similar
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procedure is applied to columns alternatively (or in the case of parallel processing, simul-
taneously). This second iteration produces a displacement estimate of Ax = 1.00. The
process is repeated and the next iteration results in Ax=0.00, thus the iterative procedure is
ended and the estimated displacement in the x direction, according to (4.18) is Ax=2.93930
units or, in integer pixels, 3 pixels.

The procedure is applied simultaneously to rows and columns, i.e., after the first row itera-
tion, the first column iteration is performed, etc. Table 4.1 indicates the results for x and v

Table 4.1 Row correlation for search area, a Gaussian image

Correlation With Row

rowk' k-4 k3 k2 k-l k k+l k2 k#3 k+d

31 -122991 -330.37 -119.03 -56.27 42.52 170.40 549 190 2.15
32 1-394.03 -126.39 -50.32 -26.25 -19.56 70.79 2.61 1.90 3.29
33 ]-132.70 4685 -20.10 -992 -568 357 023 190 4.6§
34 4365 -16.06 -6.02 -1.17 3.67 -23.65 -1.71 190 6.34
;35 -13.21 -3.52 089 442 1247 -2396 -3.05 190 891
36 [ -1.16 367 7.11 1289 67.83 -1342 -298 190 1248
37 | 301.63 -188.25 -51.52 -20.50 -8.72 -2.67 1.11 1.86 -17.34
38 | -553 452 -284 -035 332 780 9138 183 -7.94
.39 i -1.27 037 317 804 1568 21.39 13.88 1.83 -5.14
- 40 271 6.10 1252 24.18 37.39 31.69 1352 183 -3.77
41 9.26 17.43 3379 58.13 59.03 3146 11.55 1.83 -2.67
142 2241 43.81 83.73102.40 60.65 26.03 947 1.83 -1.57
43 53.39 11337 17490 112.50 48.33 19.82 7.31 1.83 -043
44| 145,77 321.73 232,65 87.07 3420 1376 532 1.83 0.7%
45 | 925.65 1216.69 191.13 57.86 21.44 849 342 183 204
46 |-443.61 1293543 11541 31.20 i0.58 366 1.62 1.83 3.35
47 1-171.40 -1654.64 5191 1039 128 -068 -0.09 1.83 4.78

)
48 | -6831 71292 115 -725 -684 470 -1.76 183 6.5
49 | -009 69200 -38.54 -21.48 -13.90 -827 -332 1.83 7.74
S0 | 47.63 880.75 -70.04 -33.86 -19.93 -11.60 4.82 1.83 9.46
S1 | 8412 7170.58 -91.99 42.33 -24.92 -1447 -6.17 1.83 1111
52 1 107.24 1975.81-111.11 -51.17 -29.73 -17.15 -7.66 1.83 12.92)
53 | 123.95 8112.47-124.42 -57.23 -33.06 -19.67 -8.82 183 14.73

54  132.00 1557.10-147.05 -63.92 -37.97 -22.17 -10.26 1.83 16.50
55 ! 13775 1363.57-151.96 -69 80 40.18 -24.09 -11.11 1.84 19.00
56 . 140.48 1465.12-169.98 -73.99 43.33 -25.88 -12.37 1.89 20.67
57 ¢ 190.06 -1307.00 -129.74 -66.07 -39.85 -24.97 -12.15 151 22.78
58  137.04 817.50-210.38 -79.37 -52.29 -29.95 -15.60 2.10 22.71
59 131.95 1930.00 -139.89 -64.17 42.60 -29.71 -13.40 3.00 30.50
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estimates.

i L Due to the low resolution used for the sensor in this example, there are situations in which
- the estumated displacement contains significant error. Table 4.1II summarizes the results of
several displacements computed by either (4.18) or (4.19). Notice that, in general, the results
obtained from (4.19) are better, although when they are rounded up to an integer number of pixels
(as for example in the last case, Ax=—4, Ay=—1) there can still be an error. This, however, lies
within the quantization error of t'4 pixel and, if the motion is the same but the sensor resolution

LN 1s increased, the results are better (see [17] for a real image 2D translation simulation).

4.3. TRANSLATION, ROTATION, AND SCALING

- To track 3D motion, the two planes (rectangular and logspiral’s computation) will be used
X simultaneously. Dunng a processing period, information from each plane will be passed back and
* ® forth. This is important due to the fact that if a logspiral sensor (image plane) is used, translation
A in image plane produces a distorted image in computation plane. On the other hand, rotation
. about and translation along the optical axis are dealt with easily using the logspiral sensor (com-

putation plane), but are difficult to deal with in the rectangular (image plane) sensor. Thus, to
accomplish the task, the logspiral sensor’s computation plare and the rectangular sensor’s image
plane will have to interact. There is useful information in both of them, depending on the type of

o motion, that can be used to optimize the process. Notice that rotation and scaling considered here
are both with respect to the optical axis. Thus, no rotation of the image plane on other axes is
X allowed.
ol
Let’s consider a combination of translation and rotation for the moment. If we can arrange
1 a group of processors in such a way that each of them is responsible for a different object orienta-
L tion, then it may be possible to estimate x and y perturbations plus rotation with respect to the
{ L4 optical axis simultaneously. This arrangement is analogous to a model proposed for the visual
)
: Table 4.1 A summary of horizontal and vertical perturbations for a Gaussian image
)
’ i
o - Displacement Ax =3.0, Ay =3.0
Iteration Ax, Ay,
. 1 193930 | 1.99919
g 2 1.00000 1.00000
2 3 0.00000 0.00000
| ; |
'.“ Ax = ¥ Ax, = 293930 1
| 7 \
A 3 !
‘ Ay = YAy = 2.99919 !
P, ) J=1 j
.
1
L e e G R S T e




i R . Y I L A
TN N TN LR LY LY v g

Table 4.111 More simulations for a Gaussian image

Displ i i - -
isplacement | lieration Ax/ Ay/ EAx/ Z‘ij X -x, Y Y,
| 255447 | 1.00000 |
| Ax=40 2 00000 00000 |
| 1.00000 1 :
Q.00000 3.55447 ' 4.00000 l '
.\y = 10
3 0.00000 -
| i
— 33158 T 19919 |
Ax =—4.0 ,’
o2 00000 | -3.564
| ay=30 0939303 | ! 356421 | 590919 | 300000 | 3.00000
“ _
i 3 0.412527 0.00000
|

-2.21238 1.99919

Ax =40

093930 356421 | 2.99919

2 1.0000 30000 | 3.00000
Ay =3.0 5

- 0.412527 0000

T 2.62900
Ax = -4.0 £.439969
Ay=-10 2 0.939303 - aseaa1 | OPPP 1 00000 | 0.00000

i KR VYL ) = |

cortex {18]. That is, we will use the tracking windows with different orientations. These win-
dows will be used by each processor which in tum computes the translational parameters. We
then look at the most consistent estimates. In other words, we will use the same procedure as
before except that we now apply the algorithm to various orientations instead of one. The con-
sistent estimates should occur when the reference and the target have the same orientation as well
as when its rows and its columns are perfectly matched. This technique can be extended to case
of translation, rotation, and scaling. All we have o do is, at a given orientation, is to generate
various tracking windows each with a different scaling factor. Thus, a processor having a tracking
window which best matches the target both in orientation and scaling will give the highest
response. In other words, it gives the most consistent estimates. Other processors will also
respond but their estimates will not be as consistent as the one having the best match tracking
window. This is where a similarity between this technique and the model in [18)] appears. Notice
that this is not the same as the conventional correlation. What we intend to do here is to
employ a one-dimensional correlation algorithm and implement it with a parallel architecture.
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The following strategy is proposed for the two planes interaction.

[. Logspiral Plane (Computation Plane)

1. Apply the algorithm previously developed to both angle rcolumn) and radius (row)
direction.

' » a).  If the estimates are not consistent within some degree, then some kind of motion must
have occurred. Signal the rectangular plane to start operation.

- b).  If the estimates are consistent within some degree. then the object experiences only ro-
. tauon or scaling or both. Thus, there is no 2D translation involved. No operaton 15
necessary in the rectangular plane.

iy v ¢).  If the estimates are zero, then nothing has happened. That is, no motion whatsoever has
v taken place.

tJ

Receive a start signal from the rectangular plane. Then, apply the same procedure as
used in step 1.

! 3. Repeat step 2 until the algorithm converges.

I1. Rectangular Plane (Image Plane)
‘. - 1. Receive astart signal from the logspiral plane. Then, take the following actions:
)

a). Calculate as and ay using the same procedure as before using some tracking windows
at a relatively low ‘‘resolution’’ or using the windows at the orientation and scaling
suggested by the computation plane to narrow down the region of operation.

® b). Look at the most consistent estimates which are the best estimates at this point.
¢). Update the original reference according to the best as and sy.
d). Remap the reference via logarithmic transformation.

. e). Signal the logspiral plane to start the operation.

LR o
Pt e Y

L
!‘J

Receive a start signal from the logspiral plane. Then, take the following actions:

P

a). Generate a finer window *‘resolution’’ according to where the most consistent estimate
(step 1) occurs or according to the angle and scaling informanon from the logspiral
plane, again, to narrow down the region of operation.

- b e ve
I Y e R

- b). Calculate ar and ay using the same procedures as in step 1. but this time use the win-
dows generated in a).

- ¢). Repeat part b throughe instep 1.

(- 3. Repeat step 2 until the algonthm converges.
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The above strategy will be used dunng a real image simulaticn. Notice that in step 1. the compu-
tauon plane may or may not give any informaton about rotation and scaling. This depends on

how inconsistent the estimates in the computation plane are. We shall pursue this matter in the
. simulauon section.

4.3.1. Simulations with a Real Image

A The technique proposed above was tested with a real image taken from a CCD camera. The
N object 1s a picture of the deck of a submarine Fig. 4.5. The background is dark with several
lighter wide spots, 1n various degrees of intensity. The image mounted on a metal plate, is placed

- on top of a vertical steel rod, which can be rotated manually, in which angles can be read accu-
rately by means of a vernier, to a fraction of a degree. The camera is placed directly above the
- object. It 1s mounted on a steel camera holder which can be moved vertically. The object is

{ placed at an arbitrary position initially. The image is then taken with a resolution of 512x512.

- Thus represents our first frame. The second frame is obtained by first manually moving the object
. in the x direction by 0.5 cm and in the y direction by 0.5 cm. The ventical steel rod is then rotated
‘ by 5°. Finally, the camera is moved vertically up 5 cm. The image is then taken. Thus, we have

..A: , the second frame which represents the target, whereas the first one is our reference, of course.
SN Notice that the background is rotated and scaled along with the object for this particular experi-
. ment set up.
'-_-: In order to be able to check whether the algorithm performs satisfactorily, we need to know
;e to what number of pixels in the » and y directions and to what 16 and «, the physical motion
'-.'_:: experienced by the object corresponds. This is, in a sense, a ‘‘calibration’’ procedure. In this way,
K we can compare the known ax, ay, and ae and x to the results obtained from the algorithm. This
was achieved using standard image processing techniques. The following are all parameters
b resulting from those procedures.
:::'.\ Background’s location (relative to an image coordinate)
'.:j:'. Top left comer (96,153) Top right corner (96,342)
' Bottom left comer (327,153) Bottom right comer (327,342)
L Object’s location (relative to an image coordinate)
i;}; Top left corner (142,179) Top right comer (142,305)
i:;; Bottom left comer (298.179) Bottom right comer (298.305)
,. Background size 9x9 cm = 189x232 pixels
N Object size 6x6 cm = 126x156 pixels
The four actual motion parameters are
;: ax = 0.5 cm = +5 pixels
L ) ay = 0.5 cm = -4 pixels
> 10=5.0%=+11°
-~ x = 5.0 cm = 0.84 (dimension reduced)
-:::_."- Before applying the algorithm, we will set the tracking window to the size of the object plus 10%
o on each side. The tracking window will be used exclusively in the rectangular plane. The
6 logspiral’s computation plane used consists of arcs of rings configuration with 60 rings, 64
st
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Fig. 4.5, Real image for simulation
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elements per ring, and an exponential spacing constant of [.04. We are now ready to apply the
algonthm for estimating the perturbations.

First, we apply the algorithm in the computation piane. The results show in the first column
of row and column estimates Table 4.IV. As can be seen, the estimates in both columns are not
consistent 1o within some preset threshold. However, they are telling us that the object has

360
become smaller. Furthermore, it rotates by about 12° (2.14x—). The rectangular plane uses this

64
information by setting its windows conservatively at 3°, 6°, 9°, 12°, and 15° for rotation and .75,
.80, .85, .90, .95 for the scaling factor. One could have narrowed the operating area a little more
if desired. The results for the first iteration are shown in Table V(a,b), whereas, their correspond-
ing histograms are illustrated in Fig. 4.6(a,b). From the table, the horizontal and vertical perturba-
tions are 2.67 for az and -0.906 for ay. The second iteration then proceeds from this point using
the exact same method as before. During this iteration, again, the estimates in the computation
plane can be used. Notice that they are getting more consistent and that the angle information is
around 10° now. The rectangular plane uses finer resolution both in orientation and in scaling
(see Table 4.VI(a,b) and Fig. 4.7(a,b)). From the tables, a¢r and ay equal to 1.83 and -1.94, respec-
tively. During the third and fourth iterations, the estimates are more or less the same (see column
3 and 4 for both row and column estimates, in Table 4.IV). The rectangular plane also processes
for two more iterations before it converges. Table 4.VII summarizes the estimates in the rec-
tangular plane. The overall estimates for horizontal and vertical perturbations are 4.565 for as and
-3.834 for ay. The rotation and scaling parameters from both planes (they agree to within a small
percent error) are approximately 10° and 0.83, respectively.

The results are very satisfactory although they are not exact as predicted. Actually, we do
not know exactly what the true perturbations are due to inevitable errors in the translation
and scaling displacements, specially. Furthermore, in most tracking applications, the estimates
do not need to be exact but they must be accurate to within some percents. These arguments also
apply to the iteration processes. That is, the rectangular plane does not have to use its windows
from 3° to 15° for rotation and .75 to .95 for the scaling factor. Instead, it could have used finer
resolution in the first place. This, of course, depends on how useful the information from the
computation is. If the estimates are too inconsistent, the computation plane is better not to tell
anything and vice versa. The degree of inconsistency of the estimates in tum depends on how
large the motion is. If it is not too large as in this case, then estimates are not quite inconsistent
as they ought to be. For a fast sampler, this could well be the case. Notice that the degree of
inconsistency of the estimates can be observed from Table 4.IV. As can be seen, as the 2D trans-
lation is getting smaller (by updating the reference), the more consistent the estimates will be.

'
-

4.4. Speed Comparison

In this section, we compare the speed of one-dimensional correlation and conventional
correlation. Although speed comparison with other algorithms will not be made, the analysis may
be conducted in a way similar to the one used here. Parallel processing for both algorithms will
not be considered. We will use a serial processor for both of them.

. @
oy
o
'
>,
:

4.4.1. Conventional Correlation

As is well known, direct correlation can be used to find target perturbations. This technique
requires a tremendous amount of processing time. An advantage of the technique is that a solu-
tion is guarantee as long as we are willing to wait. For a large image size (n2128), the correlation is
carried out in the frequency domain rather than in the spatial domain. The images that need to be
\5 correlated are transformed to the frequency domain using the Fast Fourier Transform (FFT). The

matrix (complex number) multiplication is then performed on the resultant images. The
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Table 4.1V A Real Image with Ax=5.0, Ay=~4.0, 40=11.0", x=.84

Computation Plane Estimates

Row (&) Column (A®)

1 2 3 4 1 2 3 4
-3.0 -4.0 -4.0 -4.0 - - - -
-3.0 4.0 -5.0 -5.0 - - - -
-3.0 -4.0 -4.0 -4.0 - - - -
-3.0 -4.0 -5.0 -5.0 - - - -
-3.0 4.0 -4.0 -4.0 - - - -
-5.0 -4.0 -5.0 -5.0 - - - -
6.0 -5.0 -5.0 -5.0 - - - -
-6.0 -6.0 -5.0 -5.0 - - - -
-6.0 -6.0 -5.0 -5.0 - - - -
-6.0 -6.0 -6.0 -5.0 - - - -
-5.0 -5.0 -5.0 -5.0 - - - -
-5.0 -5.0 -5.0 -4.0 - - - -
4.5 6.0 -5.0 -5.0 3.0 2.0 2.0 2.5
-7.0 -5.0 -5.0 -4.0 3.0 2.0 2.0 2.0
-7.0 -5.0 6.0 -5.0 1.5 1.5 2.0 2.0
-7.0 6.0 -4.0 -5.0 1.5 1.5 1.5 1.0
-2.33 -2.0 -3.5 -3.5 20 | 20 2.0 2.0

-10.0 4.0 -9.0 -8.0 2.33 2.0 3.5 35
-10.0 -5.0 -8.0 -7.0 1.78 1.5 1.75 1.75
-4.0 6.0 -8.0 -8.0 1.5 2.0 1.75 1.75
4.0 -6.0 -6.0 -1.0 2.25 1.75 1.78 1.75
-4.0 6.0 -5.0 -4.0 1.75 7.0 2.0 2.0
-4.0 -9.0 -5.0 -5.0 3.0 - - -
4.0 -9.0 -4.0 -5.0 - - - -
4.0 -9.0 -5.0 -35.0 - - - -
4.0 6.0 -5.0 -5.0 - - - -
-3.0 4.0 -5.0 -5.0 - - - -
-3.0 4.0 -5.0 -5.0 - - - -
-3.0 4.0 -5.0 -5.0 - - - -
-3.0 -4.0 -5.0 -4.0 - - - -
-3.0 4.0 -4.0 -5.0 - - - -

- - - x=-5.05 - - - A0=2.025
;" > -“'.'r"' "}" “,;:-"; :-_.- . .r .r - .’ AN NI

'JJ'"IJ‘-.'J'J;--' .



-

~ N
A
LAV

A

]

Ul %
Zaios

[y

s

\.-.\.
) 7y
~ 5 o
Y A,
~ 5 4
— s

= -

~T X -\ ]
b5

[ u..\

A

I~ S

3 w

= W
jes] u.- ’ 4

>

NN m
(...ﬂ.,........ -
QOODOOO0 g

OO0 -

COOO00 Lf

CUOOO0 N

0000 <

o 5

M o= g

. ; ) - 5
~ B .o“\f

R e R PN, ALY @




ALt 8

N A A P

“a ¥

O WAL SWPRRGEREREREREAR

LR S W I

WA AERE
W0

Table 4 Viay First Iterauon Ax =508y =3 0,48=11 0" .x=.84

Scaling Factor (row esumates)

Angle 75 .80 .85 .90 95
0 -2.56(7) 489 (15) 464(15) 6.58(17N) 8.88 (6)
6.0° 5.19(10) 2514200 5.26(19)  741¢20) 9.13(10)
9.0° 004217y 2.67(43)  542(31) 8.18(28®) 3.52(8) .
120° 2014 502325y 45127 840(17)  9.81(6) :
150° . 2701 495(16)  S581(16) 859(12)

8.83(9) |

Table 4.V(b) First Iterauon Ax=5.0,Ay=-34.0,A6=11.0°,x=.84

Scaling Factor (column estimates)

|

1

Angle | 75 80 85 90 95 |

300 | 2.18(12) -9.48 (9) S771(8)  -1.26(9) -3.73 (6)!

L 6.0° L67(11)  425(13) -7.89(I11)  -8.76(7)  -8.98(5) |

S 9.0° -79(16)  -906(29) -6.30(22)  -590(10)  -9.39 (7) |

C12.0° | -247(14)  -321(18)  -2.39(15)  -293(10)  4.33(8) |
; 15.0° 22.74(12)  -3.06(10)  -3.16(D) 2.04 ()

-6.15 (10)




Table 4.VI(a) Second Iteration Ar=5.0,Ay=—4.0,A8=11.0°,x=.84

Scaling Factor (row estimates)

Angle 79 81 82 83 84
85° | 7.09(6) 4.79(23) 4.41(43) 192(54)  1.70 (76)
95° | -7.18(4) 627(30) 30(64)  197(106) 1.34(93)
100° | 397(10) 5.78(32) 290(73) 1.83(191) 133 (104)
105° | 178 (11) 3.77(28)  2.53(67) 2.17(89)  0.58 (73)

408(11) 5.17(35) -642(22) 1.76(61) 294 (22)

Table 4.VI(b) Second Iteration Ax=5.0,Ay=—4.0,A8=11.0°,xk=.84

Scaling Factor (column estimates)

e . "-"*...‘. )
“. AR b

Angle 79 81 82 83 84
8.5° | -330(16) -1.38(18) -2.70(26) -221(28) -1.01(32)
9.5° | -633(25) -3.78(28) -3.44(36) -2.36(43) -.103(30)
100° | -6.40(20) -3.72(39) -3.09(40) -194(62) -2.19(39)
10.5° | -6.44 (21) -395(34) -355(36) -2.62(43) -2.15(37)
110° | -696(16) -423(Q27) -7.30(16) -2.93(34) -6.22(13)
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Table 4.VII A summary of estimates in the rectangular plane of a real image

Rectangle Plane Estimates

No. of Iteration

row (Ax)

column (Ay)

W -~

2.67
1.83
0.065

-0.906
-1.94
-0.78
-0.208

“ 7
- -~
- T Ax, = 4.565 T Ay, = -3.834
J=1 =1
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maximum frequency spectrum must be then located in order to compute the perturbations. The
following is a number of operations required to compute the correlation.

. Number of operations for FFT = 2nlog.n

1
2. Number of operations for complex matrix multiplication:

Number of additions = a’(a-1)
Number of multiplications = >

4.4.2 One-Dimensional Correlation

The basic algorithm for the one-dimensional algorithm is indicated in (12). If there is no row
search performed, then for one line we have

Number of multiplications = 3a
Number of additions = 4(a-1)+ 1
Number of division =1

Thus, for » lines, we have
Number of multiplications = a(3a)
Number of additions = 4a(x-1) +a
Number of divisions =

For 2D motion, the total number of operations are
Number of multiplications = 2xx (3a) =

Number of additions = 2x(4a (a - D+m)= Sn(n 1)+2a
Number of divisions = » +» = 24

Example. Let n equal to 256. For direct correlation, we have

FFT computation = 2aleg,» = 4096
Matrix multiplications:

Number of additions = »’(n~1) = 16.711,680
Number of multiplications = »’ = 16777216

For one-dimensional correlation, we have
Number of multiplications = 61 ° = 393.216
Number of additions = 8a(r-1)+2a = 522,752
Number of divisions = 2a = 512

The percentage of number of operations used is

393216
Multiplications = x100 = 2.344%
16777216
522752
Additions = ———x100 = 3.128%
16711680

As can be seen, we save over 95% with the one-dimensional correlation. This does not count com-
putation time for FFT since the number of operations required for the FFT computation can be
used to offset the number of divisions. Furthermore, complex matrix multiplication usually takes
more computation time than a normal one.
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o The above analysis applies to binary images since all rows have the same intensity function.
> Furthermore, it also applies to the case of one-dimensional motion regardless of the image type.
{' Thus, no row search is required for both cases. For a grey level image, row search is necessary
{ ¢ since a different row has a different intensity function. Column search, however, is not neces-

o sary. The reason for this is that once the position where most consistent estimates in row direction
:fj occur, have been located, a column displacement can be obtained. This is true because a row

R mismatch causes by a vertical shift or column displacement. One may apply the one-dimensional
x correlaton in the column direction in order to confirm the vertical displacement as we did to all
N v of the simulations.

. Let’s include a row search in the analysis above. Let's say that we will search :10% of an
N object dimension. Notice that the second term in (12) only needs to be computed one time. There-
N fore, for a lines we have

. Number of multiplications = a{2a(.2n) + 3a)

" Number of additions = »{3(a=1)24) + 4(a=1) + (21 +1)]

{ o Number of divisions = s(2x + 1)

% For » equals 0 256, we have

" Number of multiplications = 6,907.494.40

- Number of additions = 10301.491.2

A Number of divisions = 13363.2

The percentage of number of operations used is
6907494.40
Multiplications = ———x100 = 41.17%
16777216
‘@ B 10301491.2
Additions = —x100 = 61.64%

< 16711680

Again, the number of divisions are used to offset with the number of operations for the FFT and
the additional time required for the complex number multiplication and addition. As can be seen,
. we do not save as much as when we compute the perturbations without a row search. However,

® we still save 40% or more of the computation time. The point that we would like to make here is
that as the motion gets more complicated, the processing time increases tremendously. Thus, the
parallel processors are necessary in order to achieve a real-time processing for 3D motion. A sin-
gle processor will not be able to accomplish the task. Although it is true that the conventional
correlation algorithm as well as other algorithms can be implemented in highly parallel fashion,
most of them are too complex. Thus, it is very difficult to design in such manner. However, the
one-dimensional correlation has the property of simplicity and separability. That is, its
mathematic formula is simple. Each row of a moving area can be computed independently. Thus,
it is easy to design and implement the one-dimensional correlation algorithm in highly parallel
fashion (see (17] for harware implementation of the algorithm).

P
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- 4.5. Conclusion

A row (column)-correlation-algorithm for motion prediction,easily implementable by paral-
lel architecture, has been developed. If implemented by means of a general purpose digital com-
,_: puter, time consuming process is expected. However, it is still faster than conventional correla-
o tion technique. The algorithm also combines many good features of various algorithms presented
in the literature. For example, it has correlation feature of [19] and spatio-temporal technique of

' [15,16]. In addition, the algorithm also possesses a good noise immunity property. The computa-

p tion of gradients around edges or comers does not affect the accuracy of the estimates. The
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convergence rate appears to be fairly quick for a large mouon. The combinauon of the algonthm
and the BVS sensor with two planes configurations has solved the D mouon problem. The
results from the real image simulation are encouraging.
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S. PATTERN RECOGNITION USING THE BVS, THE C-TRANSFORM AND
A NEUTRAL NETWORK CLASSIFIER

5.1. Introduction

A major problem in pattern recognition is object recognition when position and
orientation vary in the image field. Typically, the problem is solved by template match-
ing. The template is compared to the image (usually by taking some sort of correlation),
and it is then shifted to another location and again compared. This process is repeated
until all possible locations are covered. If more than one object is sought, then more
templates must be used. The case with the highest correlation is then selected as the
recognized object. This process, while fairly accurate, is very time consuming even
when small image arrays are used.

In the biological visual system (BVS) a complex logarithmic conformal mapping
takes place between the retina and parts of the cortex (specifically area 17). The out-
standing feature of the BVS sensor is form invariance under magnification and rotation in
computation plane. The use of a translation invariant transform in computation plane
would shift the object to a standard location regardless of the rotational orientation or
size of the object in image plane. This would allow faster pattern recognition of objects
which is not dependent on rotations and magnifications.

A class of translation invariant transforms, the C - transforms, possesses the
desired characteristics plus other features which make this class useful. The functions
involved are very simple, and the transforms themselves exhibit a high degree of paral-
lelism. This transform can be performed using a highly parallel artificial neural system
- (ANS) for greater speed and reliability.

x This class of transforms uses identical functional layers of simple operations that
Pl can be done very quickly without computationally intensive multiplications and divi-
sions. Using this parallel structure, the transforms provide a method of transforming any
shifted image to a standard form, that can be used with a template matching scheme for
pattern recognition. The major advantages of such a system are its simplicity, highly
parallel nature, fast operation, and the computational gain derived from the reduced
complexity of the template matching.

<o 5.2 Background

The C-transform class is a class of nonlinear translation invariant transforms that
can be implemented with simple parallel networks of computational elements. Reitboeck
and Brody (1969)[1] developed the R-transform, the first known member of this class.
. The R-transform could be implemented using simple functions (sum and absolute differ-
- ence) in a parallel arrangement similar to that of the Fast Fourier Transform (Fig. 5.1).

" The transform can be used on vectors of length 2" where » in an integer. The actual i
o calculadon of the transform can be expressed as:

e Symmetric Functions f, and f, over sequence:
a(ly . 1=0,1,..2"-1 (N
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. AK),K=01,.2 -1 (2)

@ let the » -bit binary expansion of K be k... k
' find sequences yq(/).y,(/)...y. (/) by:

N
-

[\ yol)=all) (h
- and

« Y =f,0,0y,d+2""") (4)
7

ifl where

f,=f, if k=0 (S)

or

! f,=f 5 if k=1 (6)

. The k* component of the transform is then:
N AK )=y, (K) (7
(!
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- This is the formulation of the transform for the one dimensional case. The exten-
sion into two dimensions provides a similarly simple representation of the transform:

LetA(J); IJ=0,1,..2" -1 be an array.

P Construct matrices ¥',¥',..¥" such that:
YUy = AdJy, 1J=0.1,..2" -1 (8)
Let
Y uJ)=p 9
Y ¢+ =0 (10)
Y g+ =R (11)
Y a2t gt =S (12)
Then form matrices by:

Y (U 2)=f (f (PO (RS (13)
Y U2+ =ff (PR (RS (14)
Y (U2 = f(f PRI HRS)) (15)

Y (U120 +D=f (f (PO (R S)) (16)

for/J=01..2""-1

The Two-D transform is then:

X(UJy=YUJy1J=01,.2"-1 an

L4

¥

Wagh and Kanetkar (1975)(3] examined the transform in more detail and developed
4 form called the Generalized R-transform. They also made an extension of the two
dimensional R-transform into arrays that were rectangular, not only the square arrays of
Reitboeck and Brody.

Wagh and Kanetkar (1977)(2] generalized this translation invariant transform from
the R-transform’s sum and absolute difference functions to any set of two functions that
are argument symmetric. They make a convincing case for the use of the M-transform on
the grounds that at higher order it has greater accuracy (more possible classes) than the
R-transform. The M-transform also provides binary outputs for binary inputs, which
leads to a smaller ransform volume (and therefore less memory used) as compared to the
R -transform which does not provide binary outputs. They also claim that the functions
used in the M-transform (logical OR and AND) are faster to implement than the
corresponding R-transform functions. The binary nature of the M-transform makes it
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. more attractive for ANS implementation.

j Burkhardt : nd Miiller (1980){4] did a much more in depth mathematical examina-
tion of the properties of this class of transforms. They included the R and M transforms
'I P as well as two others in their analysis of the translation invariant mapping properties of
. the transform class.

Reitboeck and Altmann (1984)[5] discuss the use of the R-transform in a detailed
model of magnification and rotation invariance in the BVS. They compare the R-
transform to other methods (Mellin and Fourier-Mellin transforms) as they could possi-
bly exist in the BVS. Their model covers the log-polar mapping of information, the
DOG smoothing function that is similar to the receptive field weighting in the retina, and
various processing (thresholding and edge detection) that is useful in obtaining reason-
able results. They also suggest that these transforms can be implemented using an ANS.
They go to a great length to justify the use of these transformations in pattern recognition
in their detailed BVS model.

5.3. R and M Transform Advantages and Disadvantages

The R and M transforms exhibit a number of advantages and disadvantages that are
relevant to pattern recognition problems. These will also influence choices that are made
concerning implementation.

An advantage demonstrated by the R-transform, as mentioned earlier, is that it can
work on continuous as well as binary information. This would allow grey level process-
ing of images under certain circumstances. Another advantage is that the functions
involved, sum and absolute difference are accomplished rather quickly in computer
implementations.

The R-transform also has a number of disadvantages, one of the most notable being
that the transform volume grows very quickly. This means that the numbers in the
transformed vector or matrix are typically much larger than the values in the input vector
or array. This makes it necessary to use more computer storage space to perform this
transform. Another aspect of this problem is that this characteristic leads to non-binary
outputs for binary inputs. This could lead to difficulties in pattern recognition schemes.
In higher order problems, the R-transform has fewer distinct classes of transforms than
the M-transform. This means that the accuracy of transformation is lower for the R-
transform when the problem’s order is high.

The M-transform has several advantages when compared to the R-transform. The
transform volume of the M-transform is much more limited than the R-transform and is
on the same order as the input volume. The functons involved, logical AND and OR,
are usually among the fastest implemented on the computer, and are probably faster than
the corresponding R-transform functions. The M-transform provides binary outputs for
binary inputs, so there is no compatibility problems with other parts of a pattern recogni-
tion system. In low order problems, the M-transform has fewer distinct output classes
than the R-transform, but as the input order increases this changes so that the M-
transform is more accurate.

The major disadvantages of the M-transform include the necessity for binary input
information. The M-transform cannot use continuous data. Another disadvantage is due
to the functions, OR and AND, which are sometimes difficult to implement using some
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higher level programming languages.

5.4. Computer Simulation Results

Initial testing was done on the R and M-transforms by generating a large number of
8 dimensional binary vectors. This vector set was used to test the properties of the
transforms. This was done primarily to determine if the theory was correct in all of its
claims.

The R and M-transforms were both tested with these vectors and shifted vectors,
including cyclic shifts, producing the same transformed pattern, as expected. Advan-
tages and disadvantages of both transforms, mentioned earlier, were also confirmed.
Further testing was performed on 8 dimensional binary vectors, this time on a set of all
256 possible 8 dimensional vectors. The major reasons for this experimentation was to
determine transform volume and the number and types of classes present in the output of
the R and M-transforms.

The R-transform was performed on this set of 256 vectors and the results in terms of
translational invariance were unchanged. The maximum input vector volume was 8 (for
the all 1s case) and the maximum output transform volume was 20. The output was not
binary just as in the preliminary testing. The number of distinct classes found was 21, so
the R-transform divides the 256 8 dimensional binary vectors into 21 classes.

The M-transforms of this vector set again demonstrated the invariance to transla-
tions as shown by the previous inquiry. The maximum input vector volume was 8 and
the maximum output vector volume was also 8. The output was binary, and the
transformed vector is identical to the input vector (shifted to a standard location). The
transform yields 20 distinct classes of outputs for the 256 binary vector inputs.

In comparison, the time performance is very similar for the transforms, both of
which are very fast. The transform volume is much greater for the R-transform, and this
problem will continue to worsen as the order of the problem increases. The R-transform
provides an output that is continuous while the M-transform’s output is binary. The R-
transform does not resemble, even superficially, the input, while the M-transform is
identical (but often shifted) to the input. The number of distinct classes at this low order
1s slightly greater for the R-transform, but as the order increases this will reverse and the
M-transform will become more accurate.

5.5. Simulation of 2 Dimensional Case"

The next stage of simulation was done to test the 2 dimensional R and M-
transforms. 8x8 binary arrays were used as inputs to the 2 dimensional transforms. The
images tested were binary 4x4 squares in the 8x8 array. The square was shifted to 25 dif-
ferent locations in the 8x8 array to determine the translational invariance of the
transforms.

The R and M-transforms gave the same output for all 25 4x4 squares, which
verifies the invariance to translations of these transforms. The volume of the R-transform
was quite large compared to the input volume. The M-transform volume was the same as
the input volume, and much smaller than the R-transform volume.

The R and M-transform performance was examined for higher order 2 dimensional
arrays. The purpose was to determine the characteristics of the transforms, specifically to
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verify properties and to test the sensitivity of the process. Three classes of objects were
considered, lines, squares, and circles. The images contained one of the three at some
location in the image field. The sensitivity of the transforms was tested by varying the
width of the lines and object sizes slightly and examining the differences in the resulting
transforms. As before, the images were binary, and the array size was 64x64. This size
was chosen because it meets the 2" requirement and is easily done using the BVS sensor.

The R-transform of the higher order arrays again demonstrated the shift invariant
nature of the transform. The continuous output had a volume much greater than either
the input volume or the lower order simulations. The output arrays had some sensitivity
to line width and object size, i. e. slight variations gave slightly different transforms.
This variation in the transform increases in proportion with the variation in the image.
This sensitivity, while bothersome, is certainly within limits of adjustment for pattern
recognition. The actual recognition algorithms must be adjusted to tolerate some varia-
tions.

Tests using the M-transform provided similar verification of the translational invari-
ance properties. The output in this case was binary, and the volume was of the same
order as the input volume. The M-transform, like the R-transform, showed some sensi-
tivity to line thickness and slight variations of size, but as before, these could be com-
pensated for in the recognition algorithms. The output, unlike the R-transform output,
looks like the object in the input array.

There are several problems with using arrays of this size, primarily due to memory
space usage. While binary images take up much less space than grey level images, the
size of these (64x64 or larger) prevents comparison of more than a small number at once.
This immediately eliminates certain types of pattern recognition schemes. Another prob-
lem is that even after the scene has been "standardized" by the transform, it still poses a
pattern recogniuon problem of fairly high order, so even though the processing is drasti-
cally simplified it is still fairly extensive.

5.6. Use of Transforms With BVS Sensor

The R and M transforms must be used on square or rectangular arrays so the only
compatible computational plane is the arc of ring arrangement. This gives a rectilinear
computational plane that can be adjusted to the proper square 2 array size.

An advantage of the transforms with the BVS sensor, as mentioned earlier, is that
under the LSM scalings and rotations become translations, so these transforms can be
used to standardize all magnifications and rotations to a single image for template match-
ing.

The choice of the C-transforms, specifically the M-transform, for ANS implemen-
tation is motvated by a number of reasons. The primary reasons, as mentioned above,
are the simplicity of function and parallelism. The transforms can be performed by
identical layers of simple elements. Another aspect which reinforces the suggestion of
ANS implementation is that the transforms have a known input/output relationship, so
performance can be evaluated easily. The M-transform uses only binary information for
the vector or image representation, so the high gain sigmoid transfer function used in
many ANS will provide a binary output. And finally, the simulations can be developed
in fairly low order and can then be easily generalized to two dimensions or to higher
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order problems. These traits of the M-transform make it a reasonable candidate for ANS
e implementation.

5.7. Network Structure and Weight Matrix

AR An ANS implementation of the M-transform utilizes the processing elements (PEs)
o as threshold logic gates to perform the functons of AND and OR. This means that a
"\-'.»j high gain is necessary to make them behave properly. The connection weights can be
‘ determined quite easily for the vector case, since each PE has two inputs.

In the AND case, the PE should go to one if and only if both inputs are one, so the
- inputs should be weighted such that their weighted sum is greater than 0.5, but their indi-
S vidual weights are less than 0.5. A selection of 0.4 for the AND PE case should provide

TN this function. In the OR PE case, the output should be one if any input is one, so the
. weights should be chosen such that any input of one will give an element input of more

_ than 0.5. The choice was 0.6 for the OR PE weightings, which made it possible for the
;e weighted sum of the inputs to be greater than one. This made choice of the transfer func-
o tion harder.

The form of the network can be seen as Fig. 5.2.

As shown, the network is not symmetric, as is the case in a Hopfield network. But
in this case there is no feedback, so stability is assured. Finite inputs vield finite outputs.
The binary nature of the solution can be demonstrated as:

- Inputs 2.1/ <150 (18)

: = )
Element inputs : x = Yiw, 1.2

e (19)
. ’

.":_': Element outputs : V. = gx) < 1 (20
) Element inputs * X = TV w <12 o1
Final outpwis = m = g(¥ ) < | (22)

L ®

In the demonstration above, < 1 means that the element outputs that should be one
are very close to one due to their input values and the sigmoid transfer function. The
transfer function must have the property of mapping values of input that are greater than

S
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)
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10 1 to an output of 1 (or very nearly 1), as well as the normal sigmoid charactenistic about
Ko (.5. This is accomplished by limiting the input side of the PEs to only small values
0. greater than | (in this case 1.2) and to use only even powers ot gain. The transfer func-
- tion actually used 1s:
:::-:: Vil = gtxilym = ul,‘/'p(1»:41.u>'"'x|1,/lp (23
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Figure 5.2. Network Structure

Where V(1) is the output of element j on slab 1, x(1,) is the input to element ; on
slab 1 and p is the gain of the function. The evenness requirement is to prevent the out-
put from becoming greater than 1. In order to make the network behave properly a
number of other functions must also be specified. The I-functions relate the scaling of
the incoming signals by the proper weights, and the F-function determines how the I-
functions are combined. There are two [-functions, one corresponding to the external
inputs to the elements (slab 0 to slab 1 connections), and the other corresponding to
feedback to the elements (slab 1 to slab 1 connections). The functions used are shown
below:

1(1,0) = V(0.0)w(1,,04) (24)

1A = VvLiw(l,).10) (25
and

F(h =10 +1Q.1) (26)
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o With the network structure and weight matrix described above, the M-transform
By was performed on 4 dimensional binary vectors. We would expect to see the transla-
-j.:-:: tional invariance of the transform, as well as very fast operation of the parallel arrange-
ment. The epsilon step size can be 1 since the output is essentially a function of the input
| directly and not of the past as in the TSP. For all 4 dimensional inputs the results are
e summarized in the following table (Fig 5.3.):

) This table clearly shows the translational invariance of the M-transform. In the case
- of a translated vector (for example 0001 and 0100) the output is the same as the non-
translated case (both are 0001). This just as we expected from the previous discussion.
\ The transform is also very fast, depending upon the choice of epsilon. The limit (epsilon
oy of 1) is convergence in two steps due to the two layer parallelism of the transform.

oy The transform can also be expressed in a compressed form and extended into two
Lo - dimensions.
' 5.8. Reduced Transform Representation

e [t is desired to develop a reduced representation for this ransform so that it may be
T determined whether any computational savings can be obtained through another expres-
sion of the transform. This would involve using the PEs as more than just two input

e
o
M-transform Results : 4 Inputs
L—"_-_::',- Input Output
S 0000 0000
0001 0001
0010 0001
::':_::i 0011 0011
o 0100 0001
v 0101 0101
0 _ 0110 0011
L 0111 0111
- 1000 0001
L 1001 0011
= 1010 0101
' 1011 0111
1100 0011
o 1101 0111
i 1110 0111
° 11 1111
jf::'_f-. Figure 5.3. 4 Dimensional Vector M-transform Results.
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threshold logic gates. It seems possible that a compressed M-transform representation
may use fewer elements or fewer layers than the normal arrangement.

The nature of the transform is examined and the equations for the outputs are deter-
mined in terms of the inputs. In the 4 input case, this procedure can be summarized as:

Inpws = 1,1, 1,,1, 27

Outpws : M, M, M, M, (28)

My =1, +1;+1,+1, (29)

My=(,+1)I,+1) (30)

My=11,+1[, (32)

M, =114, (33)

Where the “add" and "multiply” operations are logical OR and AND.

The above equations demonstrate that two of the functions, M, and M,, can indeed
be compressed because they consist of only one type of function. The other two, M, and
M,, cannot be done using a single element. Each of these is a comparison of two binary
quantities that are in turn comparisons of two binary quantities. This means that since an
element is needed for each comparison, 3 elements are necessary for each of M, and M.

This total of 8 elements is the same as in the noncompressed case, so no computa-
tional advantage can be gained in the number of elements used. Furthermore, M, and M,
are two layers deep, so there will be no time improvement either. Actually, the original
case is superior because all of the elements reach the proper outputs at the same time,
since they all have the same depth (number of levels).

This means that while expectations were for a more efficient use of network struc-
ture, the best arrangement proved to be the original parallel layers of identical structure.

5.9. Extension into Two Dimensions

The transform extension into 2 spatial dimensions can be accomplished in the
manner described by equations 8-17. The transform flow in the 2 dimensional case con-
sists of layers of arrays of elements, with each layer having the identical functional
arrangement.

Unfortunately, the functions present in the 2 dimensional case are actually combi-
nations of the simple functions of the 1 dimensional case (see equations 13-16). This
leads to problems like those faced when a reduced transform representation was sought,
i.e. it takes 3 PEs to make up one functional "element". This problem is not actuall’’ as
bad as it first seems because the initial functions have quite a bit of overlap. This means
that the output of the first PEs in a functional element is needed by 2 functional elements.
This allows implementation of the 2 dimensional M-transform using only twice as many
PEs as functional elements.
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A Given this requirement, the 4x4 2 dimensional M-transform can be performed

using 64 PEs as 2 input threshold logic gates. The binary input signal enters from slab 0

v and proceeds through two functional layers of 32 PEs each, which is actually four logical
layers of 16 PEs each. This doubles the ime to convergence for the M-transform.

The same functions, the g, I, and F-functions, are used in the 2 dimensional case

as were used in the vector case. The weight matrix has been expanded and changed to

. reflect the 4 logical layers of the 2 dimensional transform. As in the previous implemen-

tation, the matrix is not symmetric, except in the sense that the two layers have sym-
) metric functionality. Again there is no direct feedback, so stability is assured.

N We would expect to see a transform that takes twice as long as the previous case,
.- and provides the necessary invariance to translations. The results obtained do indeed
demonstrate these two features, and the translational invariance is demonstrated in Fig.
5.4

A number of other input arrays were used, and the results always showed the trans-
lational invariance property.

5.10. Implementation of Learning in an ANS

Neural networks in living creatures are often capable of learning quite a variety of
.. things, which gives these networks a major advantage over conventional networks in a
- number of applications. Learning in a neural network is accomplished by the
o modification of the interconnection weights between the elements. An ANS that has the
ability to learn must also include some provision for the modification of its connection
o weights. In a hardware device this may be difficult if not impossible from a practical
‘ standpoint, but it is easily accomplished in simulation.

e The general form of the weight modification rule employed in ANS learning is:

wlj(t+l) = w‘,({) + Aw‘,(()

Where w, is the connection weight from unit i to unit j. This modification can be
e accomplished by three mechanisms used in determining Aw. They are broken into three
groups according to the amount of supervision used in each.

- The first type of learning rule is unsupervised, in which the network learns correla-
o tions, i.e. if element i on is likely to drive element j on the connection gets stronger.
o This rule can be summarized by the following equation:

L

- Aw, =k f(X.W))g(x,.w,)

T

,,_ In this rule, &, is the learning parameter, which determines how much the connec-
( 3 tion weight is changed. This may t&c a constant or may vary over time. Aw is ilso a
- function of the current state of the ;~ and the particular input and weight of the i~ ele-
Y ment. Unsupervised learning is useful when the exact desired output is unknown, or
v there are many elements that cannot be directly specified.

" The second type of learning is called weakly supervised and uses a single error sig-
[ ] nal to tell the network to learn or not to learn. This is like telling the network if it is

wrong, but not telling it where it is wrong. This rule follows an equation like:
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Figure 5.4. Two Dimensional M-Transform Results.
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Where &, is the learning parameter, as before. However, now Aw is a function of the
error signal /, and its weight w,, as well as a function of the particular input and its
weight. This type of learning is useful when ‘he desired output is known, but for some
reason the elements cannot all be directly specified (hidden elements) or a full error vec-
tor 1s unknown (order of the system is too large, etc.).

The third type of learning is highly supervised, in which the weight modifications
are adjusted according to the amount of error, i.e. the weights are changed in proportion
to their contribution to the error for that element. The general form of this rule is:

Aw” =k.f (IT.V/ 18 (x, w,)

Once again, &, is the learning coefficient, but now Aw is a function of a training
vector /. and the output vector v, so that an error value is generated for each element.
This differs from the previous weakly supervised case in which an overall error signal
was generated. As before, Aw is some function of the individual weight and input for

that element. This type of learning is used when the outputs of each element are known
so that the error vector can be generated.

Since the M-transform can be calculated easily by a separate program, all of the
outputs can be determined for the generation of the error vector. This allows the use of

highly supervised learning to teach a simple network the M-transform. The Aw function
that was used is:

Awn/ = k'.(t/ - ‘/')‘x

Where ¢ and V| are the desired and actual outputs of element ; and ; _is the «* input
to element j. The difference corresponds to the ;° component of the error vector, and
the i, term determines the amount of contribution to the output for that particular weight.
Using this function the network can be taught the M-transform.

The network structure used is the same as in the four dimensional vector case, as
shown previously, with four inputs to eight elements. The I and F-functions are the
same as before, and the g-function has been changed to the hyperbolic tangent function
used by Hopfield. This function has been shifted and scaled appropriately so that 0 and 1
are the bounds as in our previous case. The new g-function was chosen because the old
power function does not asymptotically approach 1 and 0. This means that if the input
value becomes greater than 1, the output will become less than 1, so that the weight
update rule will push the weight in the wrong direction. The hyperbolic tangent function
doesn’t have this problem.

The connection weights were initially all zero, as were the initial conditions. The
network is presented with an input vector and allowed to reach a final state (two cycles).
This is necessary so that the error vector is generated at the proper time. Once the final
state is reached, the error vector is calculated from the training input and the element
outputs. The weights are then updated according to the error vector, learning coefficient,
and individual input. Then the initial condition is reset and the next input vector is
presented and the process is repeated.
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s @ Since there are sixteen possible four dimensional input vectors, the cycle must be
{ repeated a number of times to reach a working network. There are also a number of sta-
. bility issues associated with the learning that influenced the tinal procedure. The gzin of

. the sigmoid plays a significant part in the learning process. If the gain is too high. i.e. the
& sigmiod is too steep, all of the error components are either O or 1, and the system just
; goes from state to state never reaching the desired result. This forces a flatter sigmoid.
Another factor in the stability is forcing the diagonal elements to remain zero throughout
- the simulation. This helps to maintain stability by removing direct feedback. *

y In addition to stability issues, there are several things that must be addressed to
make the system behave properly. The first of these is the noise margin of the system,
1.e. what values constitute zero and one. In this case, a noise margin of 0.15 was chosen

® so that values of .85 and above are 1 and .15 and below are 0. This seems to be a reason-
able choice, and if the output was within this margin no learning takes place. Another
important issue is the value of the leaming parameter. A number of values, constant and
variable, can be used., and several were examined to determine their effects on the learn-
ing algorithm.

i A A »~
KA LA

#

. The simulation was performed on the training set which consisted of the sixteen
' input vectors. each appended with an additional eight values representing the desired out-
puts of the tlements. This was done for both constant and variable learning parameters.
The constants used were 1.0, 0.5, 0.25. and 0.1. We would expect the lowering of the
parameter to provide smoother paths in learning space, and for the system to take more
v iterations of the test set. The results obtained do indeed demonstrate this.

For the case of a unity leamning parameter, the network leamed the M-transform in
about 12 iterations through the test set. The changes in the weights are very discontinu-
ous or jumpy. When the parameter was lowered to 0.5, it required 30 iterations of the
test set, but the weight changes were smoother. When the coefficient was lowered to

® 0.25. the number of iterations to the desired result jumped to nearly 100. The paths of
the weight modifications were much more continuous. Finally, with a parameter of 0.1
the system took almost 1000 times through the test set to reach proper M-transform form,
while the paths became very continuous in appearance.

The second case tested was for a varying learning coefficient. In this case, the
parameter starts at 0.5 and 1s reduced in 0.1 increments every 10 cycles through the test
set, stopping at 0.1. Results showed that this variable parameter provided a working net-
work in around 60 cycles through the test set.

The weight matrix obtained by the learming algorithm 1s drastically different from
that obtained from an iniual design. This seems reasonable considering the nature of the
learning process. An example of a final state of the weight matrix is shown in Fig. 5.5.
[n general, highly supervised learning seems to be an efficient and fairly quick method of
teaching a neural-like network simple tasks such as the M-transform.

In general. the ANS approach to the M-transform is a simple, fast, and efficient
method of performing the this translation invanant transform.

Once the images have been "normalized” toc a standard location by means of a C-
transtorm, the recognmuon problem remains to be solved. The complete system for pat-
tern recogniton 1s shown, 1n block diagram form, in Fig. 5.6.
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Input Weight Marrix

1.099 0.799 1.099 0.799 0.000 0.000 0.000 0.000
3.199 -0.699 2.099 4.56e-050.000 0.000 0.000 0.000
0.599 1.099 0.799 1.099 0.000 0.000 0.000 0.000

-0.299 1.499 1.81e-051.399 0.000 0.000 0.000 0.000

Network Weight Matrix

0.000 8.16e-050.200 8.16¢-050.200 8.16e-05 8.16¢-05 8.16e-05
-3.199 0.000 -0.600 -0.699 -3.099 1.499 1.799 -1.499
7.71e-05 7.71e-05 0.000 7.71e-05 7.71e-05 7.71e-05 7.71e-05 7.7 1e-05
-0.499 -0.399 -0.999 0.000 -0.999 0.999 -1.099 -0.399
0.200 0.100 1.08e-04 1.08¢-04 0.000 0.200 1.08e-04 1.08e-04
2.699 9.99e-023.099 -0.799 -1.299 0.000 -2.099 -0.899
-56.18 9239 -58.08 95.38 3530 -147.3 0.000 -3.699
-6.299 8.099 -7.099 8.598 -11.29 -2.999 4.899 0.000
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Figure 5.5. Learned Weight Matrix. [ |
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Hopneid and Tank are not adaptive. 1n other words. they lack a learning capabulity. The
Zeneral form ot the H&T network tor pattern recognition is shown in Fig 3.7[6].

The network has NVinputs o . e Moutputs v v 0 0 and an offser -V
Civen g signal space © which ts spanned by a set of basis functions B, 4 = 12, M, find
‘ne mest digital combination of basis functions 8, which describe a given signal. For the
~pediiic problem of pauern recogmition. the signal space r would consist of the two
Zimensional arras ot pixels which make up the computatuon space image. For an 8x8
arrav. N=64 The basis funcuons, 1n this case. would consist of 64-dimensional vector
representations ot the stored images. [n the case of binary images. this would consist of
ones in the posinons where a pixel 1s excited in the stored image and zeros elsewhere.
Fach ot the processing elements represents a basis function or, in our case. a stored
smaxe It atter reaching a steady state. a processing element has value 1, then this ele-
ent s the best match tor the input signal. If the input image does not match any of the
sored tmages. all the processing elements will have value zero in the steady state.

In designing the actual network, 1t is necessary to determine the value of the con-
~ecuon strengths . To thisend. an energy function must be constructed which will have a

irimum value tor the hest combination of basis functions describing a given signal.
Horteld and Tank have proposed the following general tvpe of energy function [6).
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E = 12G - 3V,B,) + 1256, B,)vV,)(1 - V,)

[ k

.l The first term is minimum when a combination of basis functions matches the input
S signal; the second term is minimum when the processing elements have values of zero or
- one. In terms of amplifier outputs, connection strengths and external inputs,

N N N N

LN _ P

o e =-125 3T, VYV - TV,
\
s=ly=l i=l

3 Comparing the two expressions,

1 T, = ~(B,8)

2.

I, = B, - 1/2(B,B,)]

Note that this network can be used to recognize binary images which are non-
translated, non-rotated, and non-scaled. In addition, the network is not self-adaptive. It
e can be used, in conjunction with the R or M-transform to implement a pattern recogni-

tion subsystem to recognize binary images in the computation plane of a HVS sensor
which are invariant to scaling and rotation with respect to the optical axis.

References
{® {1] Reitboeck, HJ.,, and Brody, T.P., "A Transformation with Invariance under Cyclic
: Permutation for Applications in Pattern Recognition,” Inf. Control, 15, pp. 130-154,
1969.
7 [2] Wagh, M.D., and Kanetkar, S.V., "A Class of Translation Invariant Transforms,"
- ° [EEE Trans. on ASSP, 25, pp. 203-205, 1977.
E (3] Wagh, M.D,, and Kanetkar, S.V., "A Multplexing Theorem and Generalisation
of R-Transform," Intern. J. Computer Math., (Sect. A) 5, pp. 163-171, 1975.
- (4] Burkhardt, H, and Miller, X., "On Invariant Sets of a Certain Class of Fast
- Translation-Invariant Transforms," /[EEE Trans. on ASSP, 28, pp. 517-523, 1980.
v [5] Reitboeck, H.J., and Altmann, J., "A Model for Size- and Rotation-Invariant Pat-

. tern Processing in the Visual System,” Biol. Cybern., 51, pp. 113-121, 1984,

(6] Tank, D.W., and Hopfield, J.J., "Simple 'Neural’ Optimization Networks: An
A/D Converter Signal Decision Circuit and a Linear Programming Circuit,” [EEE
: Trans. on Circuits and Systems, CA3-33, No. 5, May 1986.

S i B Ul N S LR ALY




6. DUAL SENSOR IMPLEMENTATION AND ANALYSIS

6.1 Introduction

One of the major goals for machine vision systems is the development of an algo-
nthm which can perform invariant pattern recognition in real time. One method which
might be used to facilitate the solution of this problem is creating a vision system which
obtains both a rectangular and a polar representation of images. The inherent characteris-
tics of each of these geometries could be used to attain algorithms which can more easily
achieve certain pattern recognition tasks.

A rectangular representation consists of a rectangular array of uniform sized square
pixels. A representation of this type is desired for two main reasons. The first is that
translations in this representation consist of simple shifts of the coordinate axes and.
hence, translation invariant algorithms could be performed more easily. The second rea-
son is that most existing pattern recognition and motion detection algorithms are based
on a rectangular representation of images.

A polar representation consists of an array of pixels whose boundaries are deter-
mined by exponentially spaced concentric circles (for log-spiral pixels) and equally
spaced rays emanating from the center. A representation of this type is desired because
scalings and rotations result in simple shifts of the coordinate axes and, hence, scale and
rotation invariant algorithms could be performed more easily with this representation.
Another desirable attribute of this representation is that fewer pixels are required to
describe a given image (since pixels in the periphery are larger). So, algorithms based on
this representation should be faster.

Given the unique advantages of each of these representatons it is likely that an
algonithm which utilized both of these representations could better perform invariant pat-
tern recognition tasks. Hence, an important consideration is the means by which this dual
representation of images can be obtained. This report discusses several possible methods
which might be used, and includes an analysis of the error introduced by some of these
methods.

6.2 Sensor Technology

In order to understand how a dual representation of an image can be obtained it is
necessary to know something about the existing technology for obtaining digital
representations of images. Area image sensors consist of a two dimensional array of pho-
todiodes. Each photodiode represents a pixel in the image representation. In most cases
these photodiodes are realized by charge-coupled devices (CCD’s). There are two basic
ways in which pixel values can be read out from an area image sensor. One way is line
by line. A type of camera which uses this method is the frame transfer CCD imager. A
second way is pixel by pixel. A charge injection device (CID) imager is capable of this
method. Figure 6.1 shows the basic geometry for each of these camera types.

The individual columns of the frame transfer imager are separated by insulation.
This forms the vertical boundary of the pixels. The honzontal boundaries of the pixels
are maintained by voltage rails (not shown). The shape of these pixels is usually square
or slightly rectangular. The image is integrated for one half a frame penod (dunng which
the photodiodes accumulate charge proportional to the amount of light which falls within
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each photodiode’s boundaries) and then the values are shifted rapidly (by the charge
ransfer capability of CCD’s) into a storage area which is shielded from incident light. In
this manner the smearing of images during read out is limited. Next, one pixei from each
column is shifted to the output register which then reads out the values. This process 1s
repeated so that pixels are read out line by line until all pixels are read out. In order to
speed up this output process an output register could be provided for each column. In this
way the values would still be read out line by line, however, it would be faster since each
line would be read out at the same time.

R | HWOR. SCAN GEN.

: [ l ‘
BTN !— — -
3 O DT O
HEEEpols
HEE sk

J
O O D O

(aj by
Fig 6.1 (a) frame transfer CCD imager
(b) CID imager

The pixels of the CID imager are insulated from each other on all sides The shape
of these pixels 1s also usually square or slightly rectangular. The pixel values can be read
out one at a ume in any order. A pixel 1s read out only when both its row and column are
selected. This 1s achieved by voitage rails as seen in Fig. 6.1(th). An obvious drawback to
this type of imager 1s that each pixel integrates the image at a different ume This effect
can be minimized, however, by ensuring that the total read out ime 1s small compared to
the image integration ame.

All standard CCD cameras produce 1mage representations which are rectanguiar
However, this does not mean that other cameras could not he built which vield other
representations directly. A novel area image sensor could be constructed 1o sield dit
ferent representations simply by changing the boundanes which define the pixels How
ever, construcung a CCD camera with non-rectangular boundanies would probably pose
some difficulties for chip tabncators. difficulties which may or mav not he wolvable

For example. suppose a camera were desired which wouid vield a polar representa
non of images directly The pixel boundanes would have to look as shown in bFig 62
One problem which exists for this geometry 1s that pixel values would all have to he nor
malized since not all pixels are the same size Second. a4 trame transter imager probabis
could not be bullt with thiy geometry because there is no consvement place to transter he
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pixel values before reading them out. However. a CID imager could probably be con-
structed without much difficulty. The pixels could be addressed by constant radius and
constant angle voltage rails.

[
v

Y
v

It also might be possible that other novel image sensors could be constructed with
many varying image representations being possible. Some of the solutons to obtaining
dual representation of images rely on this possibility.

logsp~

+

=
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g &1 Panel houndanes for polar representaton

6.1 Method for Obtaining Dual Representations of Images

Perhaps the best wav ot obtaining hoth a rectanguiar and 4 polar representation

mages would be to devote an individual camera 1o each representanon A standard trame '

‘ranster CCD camera could be used 1o obtain the rectanguiar representation directiy amd

novel sensof with 1ts photosensors laid out in a poidr tormat Could be uved to obtam the

noiar representation directly  This methad would probabiv work howeser  another

methad which would hikely be 'ess expensive and less buiks wouid he 1y use a angle

;. amera o obtain both representat, 0y For example 4 standard CCD camera - ouid e 1
e ~ed This camera would vield the rectangular representanons directly and the poiar
.

cenresentations  ould he ohtained by ombining rectanguiar pixels o torm each andive
faar podar el The value ot cach polar pixel would be taker to he the average valaue
e emcranguial e s ahicbh e atoeast hait therr area within the polar pixel s oy

Gaties I rhys manner Pwath representations | ogid he obtained rom oy ngle amera
«
[ .
¢ IThe  amera ased veed ant hgve o photosensors aid a0 Creoangaiar tormae '
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'® able to better obtain the dual representations. For example, a camera with mangular pix-
els might be used. Triangular pixels could be combined to pertecty form rectangular pix-
els and could probably combine to form polar pixels better than rectangular pixels could.
Thus. 1t might be advantageous to use a camera with tmangular shaped pixels rather than
rectangular shaped pixels.

¢ It 1s clear from the above discussion that a disadvantage exists in using only one
camera to obtain both a rectangular and a polar representation of images. Regardless of
the shape of the pixels of the single camera, there will always be some error in trying to
torm both rectangular and polar pixels. The camera which minimizes this error might be
deemed the best solution. in order to determine the camera type (determined by the lay-
out of 1ts pixels) which 1s best. a means of analvzing this error is needed. This error is
examined in the next section.

6.4 A Method to Determine which Solution is Best

The possible solutions being considered all require the superimposition of a compu-
) ration plane tdetermined by the geomewy of the representation desired) atop an image
. plane (determined by the geometry of the photosensors of the camera used), and the sub-
segquent combining of image plane pixels to form the computation plane pixels. This
combiming 15 not exact, since the image plane pixels when combined together may not
exactly form the computation plane pixel. Hence, this process can be said to add "noise”
to the svstem. This "notse” can be quantified by considening two specific errors which
o arise from the process of combining image plane pixels to form computation plane pix-
ein These errors are as tollows:

error one  Area included 1n computation plane pixel
approximation which actually lies outside
the pixel boundanes.

rrror two . Area not included 1n the computation plane
pixel approximation which actually lies
inside the pixel boundanes.

Freures & Uand & 4 on the next page illustrate these two error types for the case when the
ape nuane s rectangular and a log-spiral plane 1s supenmposed on at.

An error value which will be proportional to the actuai error of approumating a
ciputation plane pixel with 4 combination of image plane prxels 1y

Bo- error one « error twojitared of computanon plane pixels

The wam ot ertor one and error two needs to be normalized by the area ot the computa
| Loiane e eing approxanaied since tois this ratio to which the possibie error tin
ceompntation puane pieel vajuer will depend on - Another tact to note s that the map
coyrechmgque of oney including image plane prels with at least one halt their areas con

® Seaed withie che omputation plane preel being approxamated tends to keep B mimimal
He cxanurie ¢ che value of Boror vanous image plane geomemnes, o means of deter
Ty e wocanor s possible The solution which numimuzes B otor the compiete
Ve che e ot b S each Computation plane el approvimation s wouid be the
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“rror (1): Area included in log spiral pixel approximation which
actually lies outside pixel boundaries
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best soluton.

The next section includes an analysis of the error variable E for different image
plane geometries and computation plane geometries. The value of E is determined by

computing areas for error one and error two for each computation plane pixel approxima-
tion.

6.5 Analysis of Error for Possible Solutions

The first solution to be examined is the case where the camera used is a standard
CCD camera with square pixels. This solution is desirable for two main reasons. The first
is that many cameras are available which have square pixels, thus a new camera would
not have to be developed. The second reason is that square pixels can be combined to
form polar pixels with little extra circuitry needed. Thus, if it is found that the error intro-
duced by approximating polar pixels with combinations of square pixels is not so large
that the polar representation is unacceptable, then this solution would probably be recom-
mended, due to its ease of implementation.

In order to determine the amount of error introduced by this method a Fortran pro-
gram was written to calculate this error. The program first determines the square pixels
which have at least one half of their area within the given polar pixel and then determines
the value of error one and error two (defined in previous section) for each polar pixel
approximation. In calculating these values a slight approximation is used. This approxi-
mation is illustrated by the diagram in Fig. 6.5. This approximation will have only a very
small effect on values of error calculated.

The results of several computations are included in graphs one through five in
Appendix 6.A. A summary of these results is given below.

The geometry of the image plane and the computation plane for graphs one, two,
and three was:

image plane : 512x512 array of square pixels (-5 < x,y < 5)
computation plane : log-spiral array, 36 rings and 36 pixels
per ring. Radius of inner ring=0.5, and

radius of outer ring=5.0.
Graph One :

This graph shows how error one, error two, and error one + error two vary with
radius. For each ring the average value of these quantities was determined and plotted.
From this graph it can be seen that error one and error two tend to stay very close in
value. This is expected since pixels are included only if they have one half their area
within the computation plane pixel. Also, it can be seen that the values all tend to
increase with increasing radius. This is due to pixel sizes growing in periphery.

Graph Two :

This graph shows how E (defined in previous section) varies with radius. For each
ring the average value of E was determined and plotted. From this graph it can be seen
that E is largest for small values of radius and then steadily decreases as radius increases.
This shows that the approximation becomes better as the log-spiral pixels become larger,
as expected.
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Fig. 6.5 Diagram showing straight line approximation of circular
arc across square pixel.

Graph Three :

Graph Three : This graph shows how error one, error two, and error one + error two
vary with angle, (0 < angle < pi/2). For each ray of pixels the average values of each of
these quantities was determined and plotted. It can be seen that the graphs are symmetric
about pi/4. This is due to the number of pixels per ring being a multiple of four. This
causes the computation plane to be symmetric about pi/4 and, hence, these graphs. The
values of error one and error two can be seen to be lowest at angles of 0 and pi/2. This is
due to the log-spiral pixels sharing a boarder with the square pixels at these angles and.
thus, tends to lower the value of these errors.

Graph Four :
image planes : 1) 600x600 array of square pixels, (-5 < x,y < 5)
2) 500x500 array of square pixels, "
3) 400x400 array of square pixels,
4) 333x333 array of square pixels,
computation plane : log-spiral array of pixels, 36 rings and
36 pixels per ring. Radius of inner ring=0.5,
radius of outer ring = 5.0

This graph shows how the curves E vs. radius vary for square arrays of different sizes. As

R T N R JR YL Y '.‘_-.;;.‘ ot e -\.: '.}\"\' % \}
N A A . X

Troatw e “e
AR N

N e e, W AN T
LGN BRGNS OIS




[

.....
.

A Smi cas val tad uek uall sak ool sedl el ek ceil Sl el Sl Sl il Sl il il Sk L Sl B ™

expected, the smaller the individual square pixel sizes, the lower E is at a given radius.

Graph Five :
image plane : 512x512 array of square pixels, (-5 <x,y < 5)
computation planes : log-spiral array of pixels, Radius of inner
ring = (.5, radius of outer ring = 5.0
1) 28 rings, 28 pixels per ring
2) 44 rings, 44 pixels per ring
3) 52 rings, 52 pixels per ring
4) 60 rings, 60 pixels per ring

This graph shows how the curves E vs. radius vary with different computation plane
geometries. As expected, the smaller the individual log-spiral pixels the larger E is at a
given radius.

The next possible solution to be examined is the case where the camera used is a
standard CCD camera with slightly rectangular pixels. A program was written to analyze
this case since many of the available CCD cameras actually have rectangular pixels
rather than square. The results for this case can be found on graph six.

Graph Six :
image plane : 458x572 array of rectangular pixels, (-5 < x,y <5)
computation planes : log-spiral array of pixels, Radius of inner
ring = 0.5, radius of outer ring = 5.0
1) 28 rings, 28 pixels per ring
2) 44 rings, 44 pixels per ring
3) 52 rings, 52 pixels per ring
4) 60 rings, 60 pixels per ring

This graph shows how the curves E vs. radius vary as the computation plane geometry is
changed. The result was very similar to the result obtained with square pixels. The
smaller the individual log-spiral pixels the larger the value of E at a given radius.

The results of this graph show that the effect of the pixels being square or slightly
rectangular does not significantly alter the value of E. Thus a camera with either square
or slightly rectangular pixels could be used.

The next possible solution to be examined is the case where the camera used 1s a
novel sensor with triangular shaped pixels as shown in the Fig. 6.6. A camera with m-
angular shaped pixels as shown would be desirable since the pixels could be combined to
perfectly form rectangular shaped pixels and could probably be combined to form log-
spiral pixels better than rectangular pixels could. In order to examine this a Fortran pro-
gram was written which calculates the values of error one, error two, and E (as defined
before) for the case when the image plane has mangular pixels and the computation
plane is log-spiral. The results of these calculauons are shown on graph seven, Appendix
H.A.
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Fig. 6 6 Tnangular shaped pixels

(Graph Seven :
image plane - 362x724 array of tnangular shaped pixels
(-S<xv<$§)
computatton planes . log-spiral array of pixels. radius of inner
rnng = 0.5, radius of outer nng = 5.0
1) 2% nngs. 28 pixels per nng
21 36 nngs. 36 pixels per nng
31 44 nngs. 44 pixels per nng

This graph shows how the cunves E vs radius vany as the computaton plane geomet
vanied As expected. as the size ot the individual log- spiral prvels decreased the vae -
E at a given radius increased
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2) 458x572 array of rect. pixels
3V 362x724 array of mi. pixels
computation plane : log-spiral array of pixels. 28 nings and
28 pixels per ring. Radius of inner ring = 0.5,
radius of outer ring = 5.0

Graph Nine :
image planes : 1) 512x512 array of square pixels (-5 < x,y <§)
2) 458x572 array of rect. pixels
3) 362x724 array of . pixels
computation plane : log-spiral array of pixels, 44 rings and
+1 pixels per nng. Radius of inner ring = 0.5,
radius of outernng = 5.0

These two graphs show how the curves of E vs. radius compare for three different image
plane geometnies. The curves for square and rectangular geometries are seen to be very
close together. The curves for the tnangular geometry had values for E which were for
the most part less than the values of E for the other geometries.

Since the image plane geometries were chosen so as to make individual pixel areas
the same tor all three cases. it would appear that using an image plane which has triangu-
war shaped pixels would better yield a log-spiral representaton. The rectangular represen-
tation which 1s obtained by combining two triangular pixels for each rectangular pixel
necessanly creates a rectangular representation with pixels twice the size of the indivi-
Judl 1mage plane pixel. Thus, the rectangular representation created would have less
resotution then if a camera with rectangular shaped pixels ot size equal to the wriangular
nixeis were used to obtain the rectangular representation.

Another possible solution to the dual mapping problem is also analyzed as a matter
curiosity. This solution consists of an image plane with log-log shaped pixels as shown
in Fig 67 A camera which had its photosensors laid out in this manner would obtain a
wog-log representauon of images. A log-log representation of images is essentially a rec-
argular representatuon with a simular charactenstic of log-spiral representations. That is.
~ixelv in the penphery are larger. Thus less pixels are required to describe a given image
1nd aigonthms which use this representation should be faster. In order to determine how
well Log aog shaped pixels combine to torm a log-spiral representation. a Fortran pro-
sram was wntten which calculates values of error one, error two, and E (as defined
~etore: tor the case when the image plane 15 log-log shaped and the computation plane 15
ox-spiral The results of these calculatnons are shown on graph ten. Appendix 6.A.
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Fig. 6.7 Log-log shaped pixels

This graph shows how the curves E vs. radius vary as the computation plane geomewry 1y
altered. As expected, as the size of the individual log-spiral pixels decreased the value ot
E increased for a given radius. The values of E are significantly higher than those found
for similar cases in which square and triangular shaped pixels were used. However, this
does not mean that a log-spiral representation obtained from combining log-log shaped
pixels would not be adequate. This will depend on the particular application being con-
sidered.
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The art dcwn and N master are oaled At e e o Lo e ee o
Praes ey stafted out ot the ¢ O]
- - As ddata oy shitted out of the sentst afvay and nle e IR At e g e
;- count Jown register oy decremented When the register eacties zen he rpis !
~NT .
¢ the Op amp which has heen summung "he pinel data - 'm e che A cwverntes
- the ALU divides that digiized sum hy the mun .ength for 4t Dive. ‘herem™y et
- torming the averaging;. the {'P amp Jdump switch iy sctivated zeroing the output
N and the next run length 1y loaded
- 31 Operation continues unti’ all pixels in the current trame have neen read
- .
6.6.2 Operation of the digital summing arrangement (Fig 6.9,

- 1) At the beginring of a pixel-summing cycle. the A register is zeroed. and the count
. down and S registers are loaded with the run-length of the next polar pixe! ‘

As each rectangular element s shifted in, 1t 1s passed through the A/D converter and
, summed in ALUL. The results of each addition are placed in register A so that a
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-2 cumulatve sum may be obtained. Also, the count-down register is decremented.
®. 3}  When the count-down register indicates that the last element has been summed, the
o . total is divided (in ALU2) by the run-length for that pixel (stored in the S register),
o thereby forming the average pixel intensity.

:, 4)  The cycle continues untl the entire frame has been read.

2
~o A simple example of this operation follows. We will use the second approach (digi-
".. tal summing) and detail the operation in a clocked fashion. Assume a single- or muld-
3
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7 rhase clocking arrangement 1n which. dunng each complete clock cvele. a singic rec
- tangular element 15 shifted out of the sensor and both ALUs are able to pertonm their
» required funcuons f called upon to do s0). We also assume that the hardware requires
" one extra clock cycle to pertorm the set-up operations necessary prior to summing the )

! clements which form a parucular pixel. For this example. the run-lengths of the hrst
- three polar pixels to be extracted (all that we will consider at this ume) are 4. 17, and 32
. tcompletely arbitrary at this point since we do not know the lavout of the polar pixels)
: Simulauon 1s as follows iclock cycle tollowed by funcuons performed

1y Zero ROM address. Load count-down and S registers with run-length of
tirst polar pixel 1o be shifted out (4. Clear the A register.

X 2)  Shift first rectangular element into A/D conventer (flash converter) and add
- output to value 1n the A register (0). Store result in the A register. Decre-
- ment count-down register. Count-down register does not equal zero (vet) so
® conunue.

31 Shift next rectangular element into A/D converter and add output to value in
the A register. Store result in the A register. Decrement count-down regis-
ter.

4) Same as 3).

{ 5» Same as 3). However. now the count-down register is zero. Therefore,
divide the output of ALU1L by the contents of the S register (the run-length)
in ALU?2 to form the average pixel intensity. Store this in memory.

6) Increment the ROM address to point to the next run-length. Load the count-
down and S registers with the next run-length (17). Clear the A register.

t 7y Shift first rectangular element of the next polar pixel into the A/D conventer

’ and add output to value in.the A register (0). Store result in the A register.
Decrement count-down register.

8)  Shift next rectangular element into A/D converter and add output to value in
the A register. Store result in the A register. Decrement count-down regis-
ter.

A Y

)

a
AR

SO

continue . . .

o

23y Shift next rectangular element (17‘h in this pixel) into A/D converter and add
output to value in the A register. Store result in the A register. Decrement
count-down register. Count-down register is now zero. Therefore, divide
the output of ALU1 by the contents of the S register (17) in ALU2 to form
the average pixel intensity. Store this in memory.

24) Increment the ROM address to point to the next run-length. Load the count-
down and S registers with the next run-length (32). Clear the A register.

25) Shift first rectangular element of the next polar pixel into the A/D converter
and add output to value in the A register (0). Store result in the A register.

-

AL R TR RN S

O

'.: Decrement count-down register.
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N crtiaLge

X SHOONRGT e el tiny 6T clement nothos e ST W I R T LA R T
N WITPLY o s e 0 The Norepinter Note et o the N et e reene
j ©

cuntdown reeinter O ooaunt Jown tegINer v ew sen D eretare e
. che outpaut ot AL D a0 the  ontents ot the N seginter 20 0 N T o e
’ e v erage pivel ontensity o Store this oo miermers,

ST lacrement the ROM address 5o pomnt wothe et con engrth Lo ore
tow e nd S repters with the et ran engeth 0 e che N e s e

Cooantn pe LNt enire array s read

Fhivalgonthm s very svstemate and casiiy amplemented v own e

Since pixels on the innermost ring of the polar arrangement Save the smdiic -t arey
“hen wiil he tormed trom the smailest number of rectangular elements € onsequen’ .y
Gmung considerations and error andlvsis must be pertormed using these pixels  hat this
. s sotor error analvsis s esident from an averaging point of view  Since the polar pixel ~
ntensity will be the average intensity of the rectangular elerrents whose centers e
@ aithin ity horder. the smaller the area ot the polar pixel. the gre.aer will he the error ot
crror varianee ot the estimated intensity  As for urmung considerations. since one clogk
Snvaie iy wasted in preparation tor each polar pixel rprepanng the hardware to sum and
iverage the incoming rectangular elements:, the smaller the polar pixel area. the greater
w1il be the clock ¢vele overhead expended. Hence. the dependence ot nming considera

® "1ons on the innermost nng of polar pixels tsmallest polar pixels) i jusuhed

\ The subject ot error analvsis 1s one which must certainly be discussed since there
will never be a perfect fit of rectangular elements into any given polar pixel [t s this
area which we will now address. All analysis will be pertormed using an arc-ot nngs
contiguration for the loganthmic-spiral sensor. The CCD sensor will consist ot vev
square light-sensiive elements (the term rectangular. when used. reters to the overall
sensor contiguration rather than actual pixel dimensions).

6.7 Error Analysis

+ As seen in Fig. 6.4, there 1s never a perfect fit of rectangular elements into polar pix:
. els. We have chosen to assign a given rectangular element to a polar pixel 1f 1ts center 1s
within the defined boundary of that pixel. So, not only will there be error in the area
covered by the rectangular elements, but some of the intensity information attnbuted to a
given pixel will be rrom outside its boundary. Furthermore, any actual error analysis
must necessarily rely on the specific arrangement and resolution of the polar pixels and
rectangular elements. That is, in a given rectangular array of elements, the number of
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madius ot nner houndan of the innermost ring

“wdiis ot outer houndany ot the innermaost nng

B number of polar preels per ring

~ number of nings ot polar pixels

i - ratio ot the toves diameter relements) to the overall aray wze te g 1t tonvea s SO
clements in diameter on a SOOX SO0 element sensor, =0 1)

1 A A

rimag< . 18 the tractional amount by which the polar pixel’s area exceeds an integer
value )

The area ot the polar pixel is dependent on e roand *and s wiven by
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for the arc-of-nngs configuration. Also r. and r, are. 1n turn, dependent on the tovea size,
the overall array size. and the number of nngs, N If we have an vev array ot square

o . )
A ;S
I A PN AT AP



oy B A s Jader ad -."'t'vT

N
- T Gt T he e e e ' '
\ ) vl R )
VY
Coe. . Faerae e N o AT e Lt iy N A Tt T o
I Gy L T A \“'\AV"""‘,_:\\‘f VIUNE N N et Ty
N
S

A L ate s g ths

e O he e TaRe CTTOL To CoNVErEe o Zero tor an nner ning L ontanimng N
Toarea v owe ceguare that there he N polar prxeis containinyg A rectangular eie

e t N poar paveds Contanmyg v rectangular elements For then the aver
e e v and the pverage ertor s zeton We can then torm the samplied van

N AR SR SAN AT G I

}_“ t
i .
N
anere v s the normalized pixel area error

1
A

X <« oor
I «a

A

I'heretore, the sampled vanance 1s given by




i)
NN LA

D
ILIJ". L

[N

-
SO

ASS @ SV

o..-

[owe decide o nclude those error events which are between one and two pixels
ey fram the actual polar pixel area rtermed “double” errors). we must. once again
tame some distribution ot these events so that the average area converges to the actual
~iovel area There are too many varables (the problem 1s under-constrained) so we must
Sonstrain some ~o that a umque solution 18 possible. Therefore, we will assume that the
preportion of errors of magnitude  (leao to those of magnitude «(2-a» ts such that their
nerage s also zero Further, we can assurme that these "double” errors account for a por-
son oot all error events An accounting of the quantity and magnitude of each of these
crror events s given below per N polar pixels. error normalized).

error magmitude quantty
a
- (- (1-BIN,
C A, '
1 -a’
"""" a(l-BIN,
f\ /
s (2-o)
BN
. A 3
T 2-a’ (1+q)
BN,
N A 4 3
O=<asl
0<ps1
The sampled vanance then becomes
Np r ‘.
¢ = T {(-Pa(l-a)~B2a-a)}
(Np—l)A' L J
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For B=0, this reduces to the former case in which we considered only “single error
events. For the worst case, B=1. a=.5, the approximate sampled varance 1s

wag\
2

g =

(NP—I)A

which is nine times larger than the worst case (a=.5) for single error events onlyv.

Choosing a maximum allowable vanance of, say. 5%, Figs. 6.10 and 6.11 show how
the number of rings, N,, relates to the number of polar pixels per ring. N, for arrays of
size S121 512 and 1024 x 1024 pixels. Plots of =0 and B =25 are shown. lncreasmg either
N, or N_ will increase the error variance -- an adverse effect. Figure 6.12 shows how the
area of the pixels on the innermost ring of the polar array relate to the error variance.

Pixels
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| | | | |
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Figure 6.10. Pixels/ring vs. Number of rings for
Error Variance =.05 (512 x 512 pixels)
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: TDEPTHCOMPUTATION BEROM OPTIC FLOW
. 1 Introduction
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smted o this cane where tne LOS Comeapends woan me T O T it v s svaetts
oMeVer e visads Nedd VB encompasses o o mies cornor e W vigw
A L aterts somuon of the Visddi seOsOl L0 4 IOV 00 svaierT N L e L0 e ey g ot
. e [OS trom the FOER S Geomemicaliv, ohiedis Jontivue © 0 v Long ros tmoe
FOE o the FOC This rotation homever resais 0 ihe mas ommanor of motior o e
Y VE trom radial expansion toodterai mansiaton s e ang e tetweer e L ON gng e
FOE approaches 90 Computation of 3D spdce ts mDore difhic Ll Lnder 1hese JOnd. o
[n the tollowing sections we will discuss research on ontining and atiizing wne
:ntormauon inherent in optic fow for the computation of denn and structure 10 the Vi

j:"{ An aigonthm tor the determunation ot the Jow tield will aiso me discussed aiong with 4
= exdaminanon ot the problems which anse in such computations  Possible physiviogia .
:-‘_. correlates or opuc How computanons will be presented next  Finaily. a new approach o
o the problem using the BVS and sphencal svmmetn will be evamuned
L3
o 7.2 Overview of (Current Research
D Work on the determunation of object structure and depth from EM has developed
= rapidly over the last decade. Varous schemes have been proposed tor the determinauoen
\» of opucal flow and the extractor of informanon trom the flow tield A general cnucism
PY of most current work 1s that the proposed schemes are computationally intensive and

pr therefore ot limited usefulness 1n real-ume applications. Rather than review this work in

‘R detail, however, we will atternpt to provide a general understanding of the current para-
' % digm by examining the work of selected researchers.

o Prazdny [2-4] has made significant contmbutions to this field. He unalyzes opuc
‘ flow in terms of the projection of a six parameter transtormation (three translational and
three rotanonal parameters) in a Cartesian coordinate svstem. Prazdny has
o
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ooz A edtors Are avanabhie at ad rennal locanons

UL NLTTaldN AN arvels are maod
ST eI o e reling with fespect o the center of gaze iy known,

cox e szotons depact the direction and magnuude of mouon tor
SLvos ey st eacn tehnde aovanon The determinanon of these vectors s, of dtself. a

VoY tas trodosed wacneme for determuming both the structure of 3D space and
ety ot S meton of omects inthe VE O He unlizes a two stage process. The

Tovovadr ariemmites ne orticdd dow neld and the second stage interprets this field.

N L ToTTaloT aDeUl Ne srudiure ird moton parameters.

Aoy Tty cutinat opticdl Jow felds dre noisy in the sense that velocity vectors
Ao oy Lvorteidted and that thes tead to a2 loss or corruption of the available
CoTTal NToner probiem danises it there are muluple objects 1n the field of view.

CUoaan el o ovcaasion which leads o vingulanues cdisconunuities) in the flow field.
VoooTmens o tterdrenng opticds How must be robust enough 1o handle these sorts of

AL T EAEN

Al s aprroacn anst partnons the fow neld into connected segments. These seg-

Tenis are tnen merged under the hvpothesis that segments wath simular characteristics

TaLl T e same nidiy moving obiect
merzed et Rewative depth s then obtained from these parameters. This scheme is
oL e Impenious o the presence of notse and. in addion, ¢an handle cases where
wedisin the view dre moving independently 1in addition to the EMD

Jain and his colieagues [6] have also exarmuned the computation of the relative depth
rom BN Their work s of particular interest in that they unlize a polar coordinate sen-
sor geometn rather than the common rectilinear geometry used by other workers. When
mapped 0 4 computation plane via a conformal complex loganthmic mapping optical
qow can he analyzed as a single dimension (#) mouon This depends, however, on the
LOS being 1denncal to the FOE. thus being a radial flow. It the LOS diverges only
saghthy from the FOE. the methad tails due to distortiens in the optical low pattern.

7.3 Computation of Optical Flow

The work discussed above assumes that fairly accurate flow held information is
avalable Obtaiming ths information, however, is a significant problem. A number of
swhemes are available for computing determination of correspondences for prominent
features of the image across frames. The main drawback to this approach is that general
solutions to the correspondence problem do not exast. Thus, these methods tend to be ad
hoc or domain specitic.

Buxton & Buxton [7] have presented an approach which assume, that changes in
the intensity function are due only to the motion induced by the EM. The optic flow data
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can then be obtained by a low-level spatio-temporal difference of Gaussians (DOG) filter
to compute the location of moving edges within the input. Our group has used this filter
previously and shown its usefulness [8). The DOG filter determines zero-crossings
(second derivative of the intensity factor) which are equivalent to edge information.
Optic flow is obtained from the zero-crossing data through a least squares procedure.
This results in the computation of what Buxton and Buxton term vernier velocities.

A major difficulty with this approach is that it is computationally intensive, requir-
ing the performance of approximately 50,000 convolutions for each 128 X 128 frame
pair. Significant savings in computation time, however, can be achieved through the use
of parallel processing.

7.4 Physiological Correlates of Optic Flow Computation

The importance of 3D computation from optic flow for biological organisms indi-
cates that the nervous system should contain specialized mechanisms for performing this
function. The available evidence indicates that these mechanisms may involve multiple
visual areas of the cortex, primarily area 18 and the inferior parietal visual area.

An examination of the distribution of velocity sensitive cells in area 18 indicates
that within 10 degrees of the area central is the major proportion of cells are velocity
tuned [9]. These cells are bandpass for velocity and generally are directionally sensitive.
These properties are well suited for the detection and tracking of object motion. Beyond
10 degrees eccentricity, the proportion of velocity tuned cells decreases rapidly and the
major proportion of cells are velocity highpass, with orientation but not direction selec-
tivity [9]. These cells show responses that are linearly increasing with the log of the
velocity. These properties are well suited for the computation of optic flow.

Parietal visual neurons (PVNs) have been extensively studied by Mountcastle and
his colleagues [10]. PVNs have large, bilateral receptive fields and are responsive to
motion but apparently are not velocity tuned. PVNs have a complex "opponent radial”
receptive field organization [10]. They are sensitive to motion either toward or away
from the center of their receptive fields along some preferred axis. In addition, these
cells can show differential responses as a function of whether or not the motion crosses
the center of the field.

PVNs are excellent candidates for the performance of higher level processing of 3D
space. Whereas area neurons may function in the determination of optic flow, PVNs,
which are afferently connected to area 18, may utilize this information in the construc-
tion and maintenance of a 3D model of the environment. This idea is strengthened by the

fact that parietal lesions can result in severe impairments of spacial processing and visu-
ally guided behavior [10].

7.5 An Approach to 3D Computation from EM

It was pointed out in previous discussions that virtually all schemes for determining
depth from EM depend on an alignment of the line of sight and the focus of expansion.
As the LOS deviates from the FOE, the radial flow of the image becomes progressively
distorted toward lateral translation over the visual field. This distortion complicates the
determination of the optic flow, so that some schemes [e.g. 3D] incorporate methods for
locating the FOE within the flow. We are developing an approach which eliminates this
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i problem and allows the determination of depth regardless of the LOS/FOE relation.

\ An important aspect of our approach is the determination of a 3D reference frame.

S @ Most previous work computes 3D motion relative to a set of predefined 3D coordinates.
We claim that a coordinate system can and should be determined on the basis of the optic
flow itself. This provides for greater adaptability of the visual system and allows the
recalibration of the 3D model of the environment following disorientation.

Our approach involves four primary components.

L B 1) Flow Field Detection. The BVS sensor will be used for the detection of image
motion. Two possible schemes for the detection of motion are i) the use of the spatio-

temporal DOG filter or ii) an adaptation of the correlation method developed by
Narathong [see section].

2) Mapping to Computation Plane. The use of the BVS sensor allows the use of the
. A conformal complex logarithmic mapping to the computation plane. We propose that the
computation "plane" be conceptually understood as the surface of a sphere, defined by

‘
e 2 4 1 4 VA

4 2L

: three parameters, |, - and r. This sphere is oriented such that the direction of motion is
) always aligned with its polar axis. Then the parameter | corresponds with lines of lati-
- tude, - corresponds with the longitude lines and r represents the radius of the sphere.
AP This sphere can be represented as a two dimensional (| and -) surface where 0<I<n and
' 0<-<2m.

-;'. 3) Organization of the Flow Field. The spherical computation plane reflects the
. invariant geometry of the flow field in that, under EM, all world objects visually move
% along arcs from the FOE to the FOC. Thus, since the polar axis of the sphere is aligned

v with the direction of sensor motion, all image motion can be analyzed in terms of motion

\ along a single dimension ('1). This, however, depends on the proper pattern of activation
- of the computation plane. Given a limited VF, it must be mapped to the computation
N plane across an area that is congruent with the orientation of the VF relative to the direc-
e tion of the EM. Since individual points are ambiguous with respect to this function, this
s organization will depend on the relation between velocities the entire VF. This entire
4° issue is eliminated, however, if we allow the receptor surface to be a sphere as well. In

. this case, the receptor and computation planes are always congruent. This is very similar
- to the situation found in insect vision, e.g., dragonflies, or other animals with 360 degree
v VFs.

o 4) Computation of Depth. Given the congruence between the sensor array output
q and the computation plane, activity levels at each point in this plane will be proportional
_: to the distance of some surface element from the sensor along the line of sight
2 represented by that location in the computation plane.

N These four stages, motion detection, mapping, flow field organization and depth

i computation provide the basis for thedetermination of 3D spatial structure and motion
< from EM. This system is relatively simple in its basic construction due to the advantages

¥ of the BVS and log conformal mapping for the determination of radial motion.
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8. VESTIBULAR-OCULAR MOTION FOR TARGET TRACKING

Models of human eye movement have been studied. There are many features
displayed in the abilities of biological systems which could be exploited in the design of
a biological visual sensor. Among these seem to be the accuracy with which animals are
able to track target motion and, in particular, the periodic movement of targets. It should
be mentioned at the outset that, though accurate models of this behavior appear to have
been made, their usefulness is doubtful. The most recent of these models studied, which
incorporates features of its predecessors, relies on methods of estimation of target motion
from past observations. Whereas this model performs well in the tracking of regular tar-
get motion, the advantages seem small. The models will be discussed nonetheless.

Young and Stark [1] proposed a model of human smooth pursuit and saccadic eye
movements as a sampled-data control system. No attempt was made to handle regular
periodic motion in any fashion other than that used for non-periodic target movements.
The eye movement signals for these two types of motion are generated in parallel and are
additive. Smooth pursuit motion is stimulated by the retina velocity error between target
and eye movements, whereas saccadic motion is generated by retinal position error.
Their model incorporated these known features, even delaying the saccades by one sam-
pling period (=200ms) from the time the position error was measured, in agreement with
experimental results. This model simulated actual eye movement to non-periodic motion
very well.

Eckmiller [2] discussed Neural Control of Foveal Pursuit and Saccadic eye move-
ments. He was concerned with the synaptic paths and signal generation methods which
characterize the primate oculomotor system and its ability to pursue moving visual tar-
gets or direct their optical axis towards briefly presented stationary targets. His proposed
model incorporated a sequence of three major functional areas. They are the spatiotem-
poral translator, the motor program generator and the neural integrator blocks.

Spatiotemporal Translation is concerned with the transformation of spatial position
error information of retinal signals into a smooth pursuit velocity error. The article
placed major emphasis on defining the "neuroanatomical architecture” (which defines the
connections between input neurons, representing specific retinal locations, and output
neurons of the Spatiotemporal Translator) as vital to the realization of the Spatiotemporal
Translator.

The spatiotemporal Translator provides signals to the Motor Program Generator
(MPG), the second block of the signal pathway. Eckmiller sites the MPG’s as the source
of time courses of neural activity. That is, oculomotor activity is in response to signals
generated in the MPG’s, regardless of current input from the Spatiotemporal Translator
block. (The Spatiotemporal Translator supplies signals to the MPG for interpretation.) It
is in the MPG’s that models of regular waveforms are generated so that the eyes can fol-
low targets (which follow such waveforms) without any latency or error. "Very little is
known about the the neural realization of different motor program generators," and so it
is in this area that much research needs to be done.

Eckmiller concludes that further simulation of these models requires the resolution
of fundamental questions concerning biological systems. Specifically, how the motor
program generator stores and updates different motor programs for smooth pursuit

Tl T \v- -... N \m_.\

PO




B PR O
“y & . AN
O rf‘if'-'.a S el

- - e v

LA
A s

l):

movement is not known. Further, the mathematical algorithm of the neural predictor
mechanism must be researched.

A third model, by Bahill and McDonald (3], called the "Target Selective Adaptive
control” (TSAC) model, aims to describe human eye movement in response to periodic
target motions. In addition to the smooth pursuit and saccadic branches, this model
incorporates a “"TSAC" branch to estimate target motion and provide the eye with a suit-
ably ume-advanced version of the motion so that, after the predictable delays of the eye
mechanism have occurred, eye movement stays locked on to target position. This model
was simulated not with a "library” of acceptable input waveforms, as the authors pre-
ferred, but with a finite differences method of target motion estimation. It was able to
formulate an equation describing target motion using n+1 samples for an n** order input

waveform. Problems occurred if the periodic waveforms were corrupted with even small
levels of noise.

As mentioned above, it is not deemed necessary to incorporate these estimation
techniques into the BVS as their gains are marginal. Conventional position control
methods should provide adequate sensor orientation and are not fraught with the noise
problem to which we have alluded.
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o~ UNIVERSITY OF VIRGINIA
" School of Engineering and Applied Science
F 4 P The University of Virginia’s School of Engineering and Applied Science has an undergraduate
o enroliment of approximately 1,500 students with a graduate enroliment of approximately 560. There
- are 150 faculty m~mbers, a majority of whom conduct research in addition to teaching.
o
[ Research is a vital part of the educational program and interests parallel academic specialties.
) :: These range from the classical engineering disciplines of Chemicai, Civil, Eiectrical, and Mechanical
& and Aerospace to newer, more specialized fields of Biomedical Engineering, Systems Engineering,
{ . Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Computer
Science. Within these disciplines there are well equipped laboratories tor conducting highly specialized
::« research. All departments offer the doctorate; Biomedical and Materials Science grant only graduate
o degrees. In addition, courses in the humanities are offered within the School.
[~
oA The University of Virginia (which includes approximately 2,000 faculty and a total of full-time

student enrollment of about 16,400), also offers professional degrees under the schools of Architecture,
o Law, Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College

of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant

to the engineering research orogram. The School of Engineering and Applied Science is an integral
. part of this University community which provides opportunities for interdisciplinary work in pursuit
:‘\- of the basic goals of education, research, and public service.
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